#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "device_functions.h"
#include <stdio.h>
#include <windows.h>
#include <m_tools.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
#define TILE_WIDTH 16
__global__ void MatrixMulKernle(int m, int n, int k, int *A, int *B, int *C)
{
//申请共享内存,存在于每个block中
__shared__ int ds_A[TILE_WIDTH][TILE_WIDTH];
__shared__ int ds_B[TILE_WIDTH][TILE_WIDTH];
//简化坐标记法,出现下面6个表示的地方就是并行的地方。
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
//确定结果矩阵中的行和列
int iy = by * TILE_WIDTH + ty;
int ix = bx * TILE_WIDTH + tx;
if (iy >= m || ix >= k) {
return;
}
int gw = gridDim.x;
int gh = gridDim.y;
//临时变量
int Cvalue = 0;
//循环读入A,B瓦片,计算结果矩阵,分阶段进行计算
for (int t = 0; t < (n + TILE_WIDTH - 1) / TILE_WIDTH; ++t)
{
ds_A[tx][ty] = A[iy*n + t*TILE_WIDTH + tx];
ds_B[tx][ty] = B[(t*TILE_WIDTH + ty)*k + ix];
__syncthreads();
for (int i = 0; i < TILE_WIDTH; ++i)
Cvalue += ds_A[i][ty] * ds_B[tx][i];//从shared memory中取值
C[iy*k + ix] = Cvalue;
}
}
//不适用shared memory
__global__ void addKernel(int *c, const int *a, const int *b)
{
//const int bs = CUDA_LG::block_size;
//BLOCK_SIZE;
int ix = blockIdx.x * blockDim.x + threadIdx.x,
iy = blockIdx.y * blockDim.y + threadIdx.y;
if (ix >= 100 || iy >= 100) {
return;
}
int sum = 0;
for (int i = 0; i != 200; ++i) {
int ta = a[iy * 100 + i];
int tb = b[i * 100 + ix];
sum += ta*tb;
}
c[iy * 100 + ix] = sum;
}
int main()
{
const int arow = 100;
const int acol = 200;
const int brow = 200;
const int bcol = 100;
const int arraySize = arow*acol;
int * a = new int[arraySize];
int * b = new int[arraySize];
int * c = new int[arraySize/2];
for (int j = 0; j != arow; ++j) {
for (int i = 0; i != acol; ++i) {
a[j*acol + i] = i;
}
}
for (int j = 0; j != brow; ++j) {
for (int i = 0; i != bcol; ++i) {
b[j*bcol + i] = i;
}
}
addWithCuda(c, a, b, arraySize);
cudaDeviceReset();
printf("c0=%d c1=%d c[3,50]=%d \n", c[0], c[1],c[3*100+50]);
delete[] a;
delete[] b;
delete[] c;
system("pause");
return 0;
}
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{
int *dev_a = 0;
int *dev_b = 0;
int *dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
int thread_x = 100;
int thread_y = 100;
dim3 block(TILE_WIDTH, TILE_WIDTH);
int grid_w = (thread_x + block.x - 1) / block.x;
int grid_h = (thread_y + block.y - 1) / block.y;
dim3 grid(grid_w, grid_h);
// Launch a kernel on the GPU with one thread for each element.
TIME_INIT;
TIME_MARK("t1");
for(int i=0;i!=10000;++i)
addKernel << < grid, block >> > (dev_c, dev_a, dev_b);//486ms
TIME_MARK("t2");
for (int i = 0; i != 10000; ++i)
MatrixMulKernle << < grid, block >> >(100, 200, 100, dev_a, dev_b, dev_c);//1069ms
TIME_MARK("t3");
TIME_PRINT;
cudaStatus = cudaGetLastError();
cudaStatus = cudaDeviceSynchronize();
cudaStatus = cudaMemcpy(c, dev_c, size/2 * sizeof(int), cudaMemcpyDeviceToHost);
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
}