12.09

题目描述

有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1

输入

第一行一个正整数n,表示数的个数。n<=3000
第二行n个正整数a1,a2,...an

输出

最大的和

样例输入

5
3 4 5 6 7

样例输出

22
 
可以发现如果两个数都是偶数,那么gcd>=2gcd>=2,一定可以同时选;如果两个数都是奇数,那么两个数的平方和是44的倍数加22,而一个奇数的平方是44的倍数加11,一个偶数的平方是44的倍数,所以两个奇数一定可以同时选。那么我们可以将奇数与源点相连,将偶数与汇点相连,然后枚举任意一对奇偶不同的数,如果不能同时选就在两点之间连边。答案就是所有数之和−最小割。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int head[4000];
int to[3000000];
int next[3000000];
int val[3000000];
int d[4000];
int q[4000];
int back[4000];
int S,T;
int x,y,k;
int n,m;
int tot=1;
int ans;
int a[4000];
void add(int x,int y,int v)
{
    tot++;
    next[tot]=back[x];
    back[x]=tot;
    to[tot]=y;
    val[tot]=v;
    tot++;
    next[tot]=back[y];
    back[y]=tot;
    to[tot]=x;
    val[tot]=0;
}
bool bfs(int S,int T)
{
    int r=0;
    int l=0;
    memset(d,-1,sizeof(d));
    q[r++]=T;
    d[T]=2;
    while(l<r)
    {
        int now=q[l];
        for(int i=back[now];i;i=next[i])
        {
            if(d[to[i]]==-1&&val[i^1]!=0)
            {
                d[to[i]]=d[now]+1;
                q[r++]=to[i];
            }
        }
        l++;
    }
    if(d[S]==-1)
    {
        return false;
    }
    else
    {
        return true;
    }
}
int dfs(int x,int flow)
{
    if(x==T)
    {
        return flow;
    }
    int now_flow;
    int used=0;
    for(int &i=head[x];i;i=next[i])
    {
        if(d[to[i]]==d[x]-1&&val[i]!=0)
        {
            now_flow=dfs(to[i],min(flow-used,val[i]));
            val[i]-=now_flow;
            val[i^1]+=now_flow;
            used+=now_flow;
            if(now_flow==flow)
            {
                return flow;
            }
        }
    }
    if(used==0)
    {
        d[x]=-1;
    }
    return used;
}
int dinic()
{
    int res=0;
    while(bfs(S,T))
    {
        memcpy(head,back,sizeof(back));
        res+=dfs(S,0x3f3f3f3f);
    }
    return res;
}
int gcd(int x,int y)
{
    return y==0?x:gcd(y,x%y);
}
ll get(ll x)
{
    return 1ll*x*x;
}
bool check(int x,int y)
{
    if(gcd(x,y)!=1)
    {
        return false;
    }
    ll c=1ll*x*x+1ll*y*y;
    if(get(sqrt(c))!=c)
    {
        return false;
    }
    return true;
}
int main()
{
    scanf("%d",&n);
    S=n+1;
    T=S+1;
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        ans+=a[i];
        if(a[i]&1)
        {
            add(S,i,a[i]);
        }
        else
        {
            add(i,T,a[i]);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=i+1;j<=n;j++)
        {
            if(check(a[i],a[j]))
            {
                if(a[i]&1)
                {
                    add(i,j,INF);
                }
                else
                {
                    add(j,i,INF);
                }
            }
        }
    }
    printf("%d",ans-dinic());
}
posted @ 2024-12-31 10:16  liuxuechao  阅读(10)  评论(0)    收藏  举报