pyspark 决策树

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  7 18:08:40 2018

@author: luogan
"""

from pyspark.ml import Pipeline
from pyspark.ml.classification import DecisionTreeClassifier
from pyspark.ml.feature import StringIndexer, VectorIndexer
from pyspark.ml.evaluation import MulticlassClassificationEvaluator

from pyspark.sql import SparkSession

spark= SparkSession\
                .builder \
                .appName("dataFrame") \
                .getOrCreate()


# Load the data stored in LIBSVM format as a DataFrame.
data = spark.read.format("libsvm").load("/home/luogan/lg/softinstall/spark-2.2.0-bin-hadoop2.7/data/mllib/sample_libsvm_data.txt")

# Index labels, adding metadata to the label column.
# Fit on whole dataset to include all labels in index.
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
# Automatically identify categorical features, and index them.
# We specify maxCategories so features with > 4 distinct values are treated as continuous.
featureIndexer =\
    VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)

# Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = data.randomSplit([0.7, 0.3])

# Train a DecisionTree model.
dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")

# Chain indexers and tree in a Pipeline
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])

# Train model.  This also runs the indexers.
model = pipeline.fit(trainingData)

# Make predictions.
predictions = model.transform(testData)

# Select example rows to display.
predictions.select("prediction", "indexedLabel", "features").show(5)

# Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(
    labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g " % (1.0 - accuracy))

treeModel = model.stages[2]
# summary only
print(treeModel)
+----------+------------+--------------------+
|prediction|indexedLabel|            features|
+----------+------------+--------------------+
|       1.0|         1.0|(692,[95,96,97,12...|
|       1.0|         1.0|(692,[100,101,102...|
|       1.0|         1.0|(692,[121,122,123...|
|       1.0|         1.0|(692,[123,124,125...|
|       1.0|         1.0|(692,[124,125,126...|
+----------+------------+--------------------+
only showing top 5 rows

Test Error = 0.0285714 
DecisionTreeClassificationModel (uid=DecisionTreeClassifier_49f5b151055db55ad5a5) of depth 1 with 3 nodes
posted @ 2022-08-19 22:58  luoganttcc  阅读(37)  评论(0)    收藏  举报