The popular belief is that this effectiveness stems from controlling the change of the layers’ input distributions during training to reduce the so-called“internal covariate shift”. In this work, we demonstrate that such distributionalstability of layer inputs has little to do with the success of BatchNorm. Instead,we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness inducesa more predictive and stable behavior of the gradients, allowing for faster training.