向量与向量的叉积和向量与矩阵的叉积数学表达式与python 实现
向量与向量的叉积
a = ( 1 2 3 ) (1) a= \left( \begin{matrix} 1 & 2 & 3 \\ \end{matrix} \right) \tag{1} a=(123)(1)
b = ( 4 5 6 ) (2) b= \left( \begin{matrix} 4& 5& 6 \\ \end{matrix} \right) \tag{2} b=(456)(2)
c = a ⨂ b = ∣ i j k 1 2 3 4 5 6 ∣ = ( − 3 6 − 3 ) (3) c=a\bigotimes b= \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 4& 5& 6 \\ \end{vmatrix}= \left( \begin{matrix} -3 & 6 & -3 \\ \end{matrix} \right) \tag{3} c=a⨂b=∣∣∣∣∣∣i14j25k36∣∣∣∣∣∣=(−36−3)(3)
python 代码
import numpy as np
a=np.array([1,2,3])
b=np.array([4,5,6])
c=np.cross(a,b)
print(c)
[-3 6 -3]
b 1 = ( 9 2 8 4 5 6 7 8 9 ) (4) b1= \left( \begin{matrix} 9 & 2& 8 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{matrix} \right) \tag{4} b1=⎝⎛947258869⎠⎞(4)
c = a ⨂ b 1 = ∣ i j k 1 2 3 9 2 8 ∣ + ∣ i j k 1 2 3 4 5 6 ∣ + ∣ i j k 1 2 3 7 8 9 ∣ = ( 10 19 − 16 − 3 6 − 3 − 6 12 − 6 ) (5) c=a\bigotimes b_1= \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 9& 2& 8 \\ \end{vmatrix}+\begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 4& 5& 6 \\ \end{vmatrix}+\begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 7& 8& 9 \\ \end{vmatrix}= \left( \begin{matrix} 10 & 19 &-16\\ -3 & 6 & -3\\ -6 & 12& -6 \end{matrix} \right) \tag{5} c=a⨂b1=∣∣∣∣∣∣i19j22k38∣∣∣∣∣∣+∣∣∣∣∣∣i14j25k36∣∣∣∣∣∣+∣∣∣∣∣∣i17j28k39∣∣∣∣∣∣=⎝⎛10−3−619612−16−3−6⎠⎞(5)
b1=np.array([[9,2,8],[4,5,6],[7,8,9]])
print(np.cross(a,b1))
[[ 10 19 -16]
[ -3 6 -3]
[ -6 12 -6]]

浙公网安备 33010602011771号