随笔分类 -  scipy

OrdinaryKriging 克里金插值
摘要:x,y,d = 一维数组(散点数据) x0 = np.linspace(x.min, x.max, 150) y0 = np.linspace(y.min, y.max, 100) x1, y1 = np.meshgrid(x0, y0) for i in ['linear', 'power', ' 阅读全文

posted @ 2022-10-26 17:58 闹不机米 阅读(523) 评论(0) 推荐(0)

griddata 插值
摘要:x,y,d = 一维数组(散点数据) # 适用于散点数据插值为格点数据 x1, y1 = np.meshgrid(x, y) for i in ['linear', 'nearest', 'cubic']: DATA = griddata((x, y), d, (x1, y1), method=i) 阅读全文

posted @ 2022-10-26 17:37 闹不机米 阅读(78) 评论(0) 推荐(0)

Rbf 插值
摘要:i = ['multiquadric', 'inverse', 'gaussian', 'linear', 'cubic', 'quintic','thin_plate'] # 插值方法有这个几个 interp = Rbf(x, y, d, function=i) DATA = interp(x1, 阅读全文

posted @ 2022-10-26 17:23 闹不机米 阅读(190) 评论(0) 推荐(0)

python scipy.interpolate.splrep插值用法
摘要:from scipy.interpolate import splrep, splev X = [1, 9] Y = [20, 25] new_x = [1, 2, 3, 4, 5, 6, 7, 8, 9] # 进行三次样条拟合插值 ipo3 = splrep(X, Y, k=2) # 样本点导入, 阅读全文

posted @ 2022-05-13 15:55 闹不机米 阅读(1104) 评论(0) 推荐(0)

导航