W
e
l
c
o
m
e
: )

PCA

首先对于一维数据 \(Y=Y_{1},Y_{2},\dots ,Y_{n}\), 其方差表示为

\[S_{y}=\frac{1}{n-1}\sum_{1-1}^n(Y_{i}-\bar{Y})^2 \]

对于矩阵 \(X=[x_{1},x_{2},\dots ,x_{n}]^T\),其中 \(x_{i}=(x_{i1},x_{i2},\dots,x_{in})^T\)

\[X=[x_{1},x_{2},\dots ,x_{n}]^T=\left[ \begin{matrix} x_{11}&x_{12}&\dots&x_{1n}\\ x_{21}&x_{22}&\dots&x_{2n} \\ \dots&\dots&\dots&\dots \\ x_{n 1} &x_{n 2} & \dots & x_{n n} \end{matrix} \right]_{n\times n} \]

\(X\) 平均值可表示为

\[\bar{X}_{n\times 1}=\left[ \begin{matrix} \bar{x_{1}^T} \\ \bar{x_{2}^T} \\ \cdots \\ \bar{x_{n}^T} \end{matrix}\right]=\frac{1}{n-1}X \cdot 1_{n\times 1} \]

\[\bar{x}_{1\times n}=\left[ \begin{matrix} \bar{x_{*1}^T} & \bar{x_{*2}^T} & \cdots & \bar{x_{*n}^T} \end{matrix}\right]=\frac{1}{n-1}1_{1\times n}\cdot X \]

\(X\) 的协方差可表示为

\[S=\frac{1}{n-1}\sum_{1=1}^n(x_{i}-\bar{x})^T(x_{i}-\bar{x}) \]

将每一个向量 \(x_{i}\) 投影到向量 \(v\),得到新的向量 \(s\)

\[\mid\mid s_{i}\mid\mid_{2}=v\cdot x_{i}=v^{T}x_{i}=x_{i}^Tv \]

求解使得所有的投影后的向量的方差最小

\[\begin{align} S_{v}&=\frac{1}{n-1}\sum\mid\mid s_{i}\mid\mid_{2}^2=\frac{1}{n-1}\sum(v^{T}x_{i}\cdot x_{i}^Tv) \\ &=\frac{1}{n-1}\sum v^{T} x_{i}x_{i}^{T} v \\ &=\frac{1}{n-1}v^T\left[ \begin{matrix} x_{1}&x_{2} & \cdots & x_{n} \end{matrix}\right]\left[ \begin{matrix} x_{1}^T \\ x_{2}^T \\ \cdots \\ x_{n}^T \end{matrix}\right]v \\ &=\frac{1}{n-1}v^TXX^Tv=v^{T} \frac{1}{n-1}XX^Tv=v^TSv \end{align} \]

PCA 的主要问题就是

\[\max S_{v} \quad st \quad v^Tv=1 \]

构造拉格朗日函数

\[G=v^TSv-\lambda (1-v^Tv) \]

\(G\)\(v\) 矩阵求导

\[2S\cdot v-2\lambda v=0\implies Sv=\lambda v \]

posted @ 2025-06-12 12:21  洛白故  阅读(13)  评论(0)    收藏  举报