算法基础:定义-时间复杂度-列表查找
1.算法定义

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
一个算法应该具有以下七个重要的特征:
①有穷性(Finiteness):算法的有穷性是指算法必须能在执行有限个步骤之后终止;
②确切性(Definiteness):算法的每一步骤必须有确切的定义;
③输入项(Input):一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输 入是指算法本身定出了初始条件;
④输出项(Output):一个算法有一个或多个输出,以反映对输入数据加工后的结果。没 有输出的算法是毫无意义的;
⑤可行性(Effectiveness):算法中执行的任何计算步骤都是可以被分解为基本的可执行 的操作步,即每个计算步都可以在有限时间内完成(也称之为有效性);
⑥高效性(High efficiency):执行速度快,占用资源少;
⑦健壮性(Robustness):对数据响应正确。
2、复习递归

看下面四个函数,那个是正常的递归
def func1(x):
print(x)
func1(x-1)
没有结束,会跑死
def func2(x):
if x > 0:
print(x)
func2(x+1)
递归是越来越小,而这个是越来越大,也会跑死
def func3(x):
if x > 0:
print(x)
func3(x-1)
第三个可以
def func4(x):
if x > 0:
func4(x - 1)
print(x)
第四个也可以
函数3和函数4的区别
def func4(x):
if x > 0:
func4(x - 1)
print(x)
func4(5)
"D:\Program Files\Python35\python3.exe" D:/python13/day32/1.py
1
2
3
4
5
Process finished with exit code 0

def func3(x):
if x > 0:
print(x)
func3(x-1)
func3(5)
"D:\Program Files\Python35\python3.exe" D:/python13/day32/1.py
5
4
3
2
1
Process finished with exit code 0

3. 时间复杂度

计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用大O符号(大O符号(Big O notation)是用于描述函数渐进行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。)表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况。
大O,简而言之可以认为它的含义是“order of”(大约是)。
无穷大渐近
大O符号在分析算法效率的时候非常有用。举个例子,解决一个规模为 n 的问题所花费的时间(或者所需步骤的数目)可以被求得:T(n) = 4n^2 - 2n + 2。
当 n 增大时,n^2; 项将开始占主导地位,而其他各项可以被忽略——举例说明:当 n = 500,4n^2; 项是 2n 项的1000倍大,因此在大多数场合下,省略后者对表达式的值的影响将是可以忽略不计的。
计算方法:
1.一个算法执行所耗费的时间:
2.一般情况下:
3.常见的时间复杂度
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
}
}

n和logn那个快?

时间复杂度小结:

空间复杂度

时间复杂度占用的是时间,空间复杂度占用的是内存

列表查找
概述

二分查找

为什么二分查找快?是因为有序,每次把空间缩小一半
def bin_search(data_set, val):
low = 0
high = len(data_set) - 1
while low <= high:
mid = (low+high)//2
if data_set[mid] == val:
return mid
elif data_set[mid] < val:
low = mid + 1
else:
high = mid - 1
return
alex的二分查找
def binary_search(dataset, find_num):
if len(dataset) > 1:
mid = int(len(dataset) / 2)
if dataset[mid] == find_num:
#print("Find it")
return dataset[mid]
elif dataset[mid] > find_num:
return binary_search(dataset[0:mid], find_num)
else:
return binary_search(dataset[mid + 1:], find_num)
else:
if dataset[0] == find_num:
#print("Find it")
return dataset[0]
else:
pass
#print("Cannot find it.")
两个比较
import time
import random
def cal_time(func):
def wrapper(*args, **kwargs):
t1 = time.time()
result = func(*args, **kwargs)
t2 = time.time()
print("%s running time: %s secs." % (func.__name__, t2 - t1))
return result
return wrapper
@cal_time
def bin_search(data_set, val):
low = 0
high = len(data_set) - 1
while low <= high:
mid = (low+high)//2
if data_set[mid] == val:
return mid
elif data_set[mid] < val:
low = mid + 1
else:
high = mid - 1
return
def binary_search(dataset, find_num):
if len(dataset) > 1:
mid = int(len(dataset) / 2)
if dataset[mid] == find_num:
#print("Find it")
return dataset[mid]
elif dataset[mid] > find_num:
return binary_search(dataset[0:mid], find_num)
else:
return binary_search(dataset[mid + 1:], find_num)
else:
if dataset[0] == find_num:
#print("Find it")
return dataset[0]
else:
pass
#print("Cannot find it.")
@cal_time
def binary_search_alex(data_set, val):
return binary_search(data_set, val)
def random_list(n):
result = []
ids = list(range(1001,1001+n))
a1 = ['zhao','qian','sun','li']
a2 = ['li','hao','','']
a3 = ['qiang','guo']
for i in range(n):
age = random.randint(18,60)
id = ids[i]
name = random.choice(a1)+random.choice(a2)+random.choice(a3)
data = list(range(100000000))
print(bin_search(data, 173320))
print(binary_search_alex(data, 173320))
打印结果如下:
"D:\Program Files\Python35\python3.exe" D:/python13/day32/2.py bin_search running time: 0.0 secs. 173320 binary_search_alex running time: 2.128999948501587 secs. 173320 Process finished with exit code 0
慢主要是慢在切片上,因为切片是非常消耗时间的 ,因为要复制一份
列表排序总结:



浙公网安备 33010602011771号