椭圆曲线Diffie-Hellman密钥交换(ECDH)

椭圆曲线Diffie-Hellman密钥交换(ECDH)

椭圆曲线密码:https://www.cnblogs.com/luminescence/p/18932875

1. 椭圆曲线基础

1.1 椭圆曲线方程

椭圆曲线由以下方程定义:

y² = x³ + ax + b (mod p)

其中:

  • ab是曲线参数
  • p是一个大素数
  • 所有运算都在模p下进行

1.2 椭圆曲线上的点

Point类表示椭圆曲线上的点:

class Point:
    def __init__(self, x: int = None, y: int = None):
        self.x = x
        self.y = y
    
    def is_infinity(self) -> bool:
        return self.x is None and self.y is None

特殊点无穷远点表示群运算的单位元

2. 椭圆曲线运算

2.1 点加法

椭圆曲线上的点加法运算遵循以下规则:

  1. 单位元:P + ∞ = P
  2. 逆元:P + (-P) = ∞
  3. 点加倍:P + P = 2P
  4. 不同点相加:P + Q = R
    代码实现:
def add(self, p1: Point, p2: Point) -> Point:
    if p1.is_infinity():
        return p2
    if p2.is_infinity():
        return p1
    
    # P + (-P) = 无穷远点
    if p1.x == p2.x and p1.y != p2.y:
        return self.infinity
    
    # 点加倍 P + P
    if p1 == p2:
        if p1.y == 0:
            return self.infinity
        numerator = (3 * p1.x * p1.x + self.a) % self.p
        denominator = (2 * p1.y) % self.p
        lam = (numerator * self.mod_inverse(denominator, self.p)) % self.p
    else:
        # P + Q
        numerator = (p2.y - p1.y) % self.p
        denominator = (p2.x - p1.x) % self.p
        lam = (numerator * self.mod_inverse(denominator, self.p)) % self.p
    
    x3 = (lam * lam - p1.x - p2.x) % self.p
    y3 = (lam * (p1.x - x3) - p1.y) % self.p
    
    return Point(x3, y3)

2.2 标量乘法

标量乘法k*P使用"双倍-加"算法实现:

def multiply(self, k: int, point: Point) -> Point:
    if k == 0:
        return self.infinity
    if k < 0:
        raise ValueError("k 必须为正整数")
    
    result = self.infinity
    addend = point
    
    while k:
        if k & 1:
            result = self.add(result, addend)
        addend = self.add(addend, addend)
        k >>= 1
    
    return result

3. ECDH密钥交换协议

3.1 协议步骤

  1. 双方约定使用相同的椭圆曲线参数和基点G
  2. Alice生成私钥a,计算公钥A = a*G
  3. Bob生成私钥b,计算公钥B = b*G
  4. Alice计算共享密钥S = a*B
  5. Bob计算共享密钥S = b*A
  6. 由于aB = a(bG) = b(aG) = bA,双方得到相同的共享密钥

3.2 实现

class ECDH:
    def __init__(self, curve: EllipticCurve, base_point: Point):
        self.curve = curve
        self.base_point = base_point
        if not curve.is_on_curve(base_point):
            raise ValueError("基点不在曲线上")
    
    def generate_private_key(self, bits: int = 256) -> int:
        """生成私钥"""
        return secrets.randbelow(2**bits - 1) + 1
    
    def compute_public_key(self, private_key: int) -> Point:
        """计算公钥"""
        return self.curve.multiply(private_key, self.base_point)
    
    def compute_shared_secret(self, private_key: int, peer_public_key: Point) -> bytes:
        """计算共享密钥"""
        shared_point = self.curve.multiply(private_key, peer_public_key)
        if shared_point.is_infinity():
            raise ValueError("共享密钥计算失败")
        shared_bytes = shared_point.x.to_bytes((shared_point.x.bit_length() + 7) // 8, 'big')
        return hashlib.sha256(shared_bytes).digest()
posted @ 2025-11-20 10:47  lumiere_cloud  阅读(6)  评论(0)    收藏  举报