Java 基础面试总结
常见编译型语言:C、C++、Go、Rust 等(执行速度快,但开发效率低)
常见解释型语言:Python、JavaScript、PHP(开发效率高,但执行效率低)
先编译后解释:Java
重载和重写有什么区别?
重载就是同样的一个方法能够根据输入数据的不同,做出不同的处理
重写就是当子类继承自父类的相同方法,输入数据一样,但要做出有别于父类的响应时,你就要覆盖父类方法
重载
发生在同一个类中(或者父类和子类之间),方法名必须相同,参数类型不同、个数不同、顺序不同,方法返回值和访问修饰符可以不同。
《Java 核心技术》这本书是这样介绍重载的:
如果多个方法(比如
StringBuilder的构造方法)有相同的名字、不同的参数, 便产生了重载。StringBuilder sb = new StringBuilder(); StringBuilder sb2 = new StringBuilder("HelloWorld");编译器必须挑选出具体执行哪个方法,它通过用各个方法给出的参数类型与特定方法调用所使用的值类型进行匹配来挑选出相应的方法。 如果编译器找不到匹配的参数, 就会产生编译时错误, 因为根本不存在匹配, 或者没有一个比其他的更好(这个过程被称为重载解析(overloading resolution))。
Java 允许重载任何方法, 而不只是构造器方法。
综上:重载就是同一个类中多个同名方法根据不同的传参来执行不同的逻辑处理。
重写
重写发生在运行期,是子类对父类的允许访问的方法的实现过程进行重新编写。
- 方法名、参数列表必须相同,子类方法返回值类型应比父类方法返回值类型更小或相等,抛出的异常范围小于等于父类,访问修饰符范围大于等于父类。
- 如果父类方法访问修饰符为
private/final/static则子类就不能重写该方法,但是被static修饰的方法能够被再次声明。 - 构造方法无法被重写
综上:重写就是子类对父类方法的重新改造,外部样子不能改变,内部逻辑可以改变。
| 区别点 | 重载方法 | 重写方法 |
|---|---|---|
| 发生范围 | 同一个类 | 子类 |
| 参数列表 | 必须修改 | 一定不能修改 |
| 返回类型 | 可修改 | 子类方法返回值类型应比父类方法返回值类型更小或相等 |
| 异常 | 可修改 | 子类方法声明抛出的异常类应比父类方法声明抛出的异常类更小或相等; |
| 访问修饰符 | 可修改 | 一定不能做更严格的限制(可以降低限制) |
| 发生阶段 | 编译期 | 运行期 |
方法的重写要遵循“两同两小一大”
- “两同”即方法名相同、形参列表相同;
- “两小”指的是子类方法返回值类型应比父类方法返回值类型更小或相等,子类方法声明抛出的异常类应比父类方法声明抛出的异常类更小或相等;
- “一大”指的是子类方法的访问权限应比父类方法的访问权限更大或相等。
⭐️ 关于 重写的返回值类型 这里需要额外多说明一下,上面的表述不太清晰准确:如果方法的返回类型是 void 和基本数据类型,则返回值重写时不可修改。但是如果方法的返回值是引用类型,重写时是可以返回该引用类型的子类的。
public class Hero {
public String name() {
return "超级英雄";
}
}
public class SuperMan extends Hero{
@Override
public String name() {
return "超人";
}
public Hero hero() {
return new Hero();
}
}
public class SuperSuperMan extends SuperMan {
public String name() {
return "超级超级英雄";
}
@Override
public SuperMan hero() {
return new SuperMan();
}
}
四种访问权限修饰符区别
访问权限 类 包 子类 其他包
public ∨ ∨ ∨ ∨ (对任何人都是可用的)
protect ∨ ∨ ∨ × (继承的类可以访问以及和private一样的权限)
default ∨ ∨ × × (包访问权限,即在整个包内均可被访问)
private ∨ × × × (除类型创建者和类型的内部方法之外的任何人都不能访问的元素)
包装类型的缓存机制
Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。
Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character 创建了数值在 [0,127] 范围的缓存数据,Boolean 直接返回 True or False。两种浮点数类型的包装类 Float,Double 并没有实现缓存机制。
Integer 缓存源码:
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
private static class IntegerCache {
static final int low = -128;
static final int high;
static {
// high value may be configured by property
int h = 127;
}
}
Character 缓存源码:
public static Character valueOf(char c) {
if (c <= 127) { // must cache
return CharacterCache.cache[(int)c];
}
return new Character(c);
}
private static class CharacterCache {
private CharacterCache(){}
static final Character cache[] = new Character[127 + 1];
static {
for (int i = 0; i < cache.length; i++)
cache[i] = new Character((char)i);
}
}
Boolean 缓存源码:
public static Boolean valueOf(boolean b) {
return (b ? TRUE : FALSE);
}
如果超出对应范围仍然会去创建新的对象,缓存的范围区间的大小只是在性能和资源之间的权衡。
两种浮点数类型的包装类 Float,Double 并没有实现缓存机制。
Integer i1 = 33;
Integer i2 = 33;
System.out.println(i1 == i2);// 输出 true(常量池获取,创建一次对象)
Float i11 = 333f;
Float i22 = 333f;
System.out.println(i11 == i22);// 输出 false(各自分别创建,创建两次对象)
Double i3 = 1.2;
Double i4 = 1.2;
System.out.println(i3 == i4);// 输出 false(各自分别创建,创建两次对象)
下面我们来看一下问题。下面的代码的输出结果是 true 还是 false 呢?
Integer i1 = 40;
Integer i2 = new Integer(40);
System.out.println(i1==i2);
Integer i1=40 这一行代码会发生装箱,也就是说这行代码等价于 Integer i1=Integer.valueOf(40) 。因此,i1 直接使用的是缓存中的对象。而Integer i2 = new Integer(40) 会直接创建新的对象。
因此,答案是 false 。你答对了吗?
记住:所有整型包装类对象之间值的比较,全部使用 equals 方法比较。
为什么浮点数运算的时候会有精度丢失的风险?
浮点数运算精度丢失代码演示:
float a = 2.0f - 1.9f;
float b = 1.8f - 1.7f;
System.out.println(a);// 0.100000024
System.out.println(b);// 0.099999905
System.out.println(a == b);// false
为什么会出现这个问题呢?
这个和计算机保存浮点数的机制有很大关系。我们知道计算机是二进制的,而且计算机在表示一个数字时,宽度是有限的,无限循环的小数存储在计算机时,只能被截断,所以就会导致小数精度发生损失的情况。这也就是解释了为什么浮点数没有办法用二进制精确表示。
就比如说十进制下的 0.2 就没办法精确转换成二进制小数:
// 0.2 转换为二进制数的过程为,不断乘以 2,直到不存在小数为止,
// 在这个计算过程中,得到的整数部分从上到下排列就是二进制的结果。
0.2 * 2 = 0.4 -> 0
0.4 * 2 = 0.8 -> 0
0.8 * 2 = 1.6 -> 1
0.6 * 2 = 1.2 -> 1
0.2 * 2 = 0.4 -> 0(发生循环)
...
如何解决浮点数运算的精度丢失问题?
BigDecimal 可以实现对浮点数的运算,不会造成精度丢失。通常情况下,大部分需要浮点数精确运算结果的业务场景(比如涉及到钱的场景)都是通过 BigDecimal 来做的。
BigDecimal a = new BigDecimal("1.0");
BigDecimal b = new BigDecimal("0.9");
BigDecimal c = new BigDecimal("0.8");
BigDecimal x = a.subtract(b);
BigDecimal y = b.subtract(c);
System.out.println(x); /* 0.1 */
System.out.println(y); /* 0.1 */
System.out.println(Objects.equals(x, y)); /* true */
超过 long 整型的数据应该如何表示?
基本数值类型都有一个表达范围,如果超过这个范围就会有数值溢出的风险。
在 Java 中,64 位 long 整型是最大的整数类型。
long l = Long.MAX_VALUE;
System.out.println(l + 1); // -9223372036854775808
System.out.println(l + 1 == Long.MIN_VALUE); // true
BigInteger 内部使用 int[] 数组来存储任意大小的整形数据。
相对于常规整数类型的运算来说,BigInteger 运算的效率会相对较低。
面向对象和面向过程的区别
两者的主要区别在于解决问题的方式不同:
- 面向过程把解决问题的过程拆成一个个方法,通过一个个方法的执行解决问题。
- 面向对象会先抽象出对象,然后用对象执行方法的方式解决问题。
另外,面向对象开发的程序一般更易维护、易复用、易扩展。
相关 issue : 面向过程 :面向过程性能比面向对象高?
面向过程 :面向过程性能比面向对象高。 因为类调用时需要实例化,开销比较大,比较消耗资源,所以当性能是最重要的考量因素的时候,比如单片机、嵌入式开发、Linux/Unix 等一般采用面向过程开发。
----》》
这个并不是根本原因,面向过程也需要分配内存,计算内存偏移量,Java 性能差的主要原因并不是因为它是面向对象语言,而是 Java 是半编译语言,最终的执行代码并不是可以直接被 CPU 执行的二进制机械码。而面向过程语言大多都是直接编译成机械码在电脑上执行,并且其它一些面向过程的脚本语言性能也并不一定比 Java 好。
接口和抽象类有什么共同点和区别?
共同点 :
- 都不能被实例化。
- 都可以包含抽象方法。
- 都可以有默认实现的方法(Java 8 可以用
default关键字在接口中定义默认方法)。
区别 :
- 接口主要用于对类的行为进行约束,你实现了某个接口就具有了对应的行为。抽象类主要用于代码复用,强调的是所属关系。
- 一个类只能继承一个类,但是可以实现多个接口。
- 接口中的成员变量只能是
public static final类型的,不能被修改且必须有初始值,而抽象类的成员变量默认 default,可在子类中被重新定义,也可被重新赋值。
深拷贝和浅拷贝区别了解吗?什么是引用拷贝?
关于深拷贝和浅拷贝区别,我这里先给结论:
- 浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部的属性是引用类型的话,浅拷贝会直接复制内部对象的引用地址,也就是说拷贝对象和原对象共用同一个内部对象。
- 深拷贝 :深拷贝会完全复制整个对象,包括这个对象所包含的内部对象。
上面的结论没有完全理解的话也没关系,我们来看一个具体的案例!
浅拷贝
浅拷贝的示例代码如下,我们这里实现了 Cloneable 接口,并重写了 clone() 方法。
clone() 方法的实现很简单,直接调用的是父类 Object 的 clone() 方法。
public class Address implements Cloneable{
private String name;
// 省略构造函数、Getter&Setter方法
@Override
public Address clone() {
try {
return (Address) super.clone();
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
}
}
public class Person implements Cloneable {
private Address address;
// 省略构造函数、Getter&Setter方法
@Override
public Person clone() {
try {
Person person = (Person) super.clone();
return person;
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
}
}
测试 :
Person person1 = new Person(new Address("武汉"));
Person person1Copy = person1.clone();
// true
System.out.println(person1.getAddress() == person1Copy.getAddress());
从输出结构就可以看出, person1 的克隆对象和 person1 使用的仍然是同一个 Address 对象。
深拷贝
这里我们简单对 Person 类的 clone() 方法进行修改,连带着要把 Person 对象内部的 Address 对象一起复制。
@Override
public Person clone() {
try {
Person person = (Person) super.clone();
person.setAddress(person.getAddress().clone());
return person;
} catch (CloneNotSupportedException e) {
throw new AssertionError();
}
}
测试 :
Person person1 = new Person(new Address("武汉"));
Person person1Copy = person1.clone();
// false
System.out.println(person1.getAddress() == person1Copy.getAddress());
从输出结构就可以看出,虽然 person1 的克隆对象和 person1 包含的 Address 对象已经是不同的了。
那什么是引用拷贝呢? 简单来说,引用拷贝就是两个不同的引用指向同一个对象。
我专门画了一张图来描述浅拷贝、深拷贝、引用拷贝:

Java 常见类之 Object
Object 类的常见方法有哪些?
Object 类是一个特殊的类,是所有类的父类。它主要提供了以下 11 个方法:
/**
* native 方法,用于返回当前运行时对象的 Class 对象,使用了 final 关键字修饰,故不允许子类重写。
*/
public final native Class<?> getClass()
/**
* native 方法,用于返回对象的哈希码,主要使用在哈希表中,比如 JDK 中的HashMap。
*/
public native int hashCode()
/**
* 用于比较 2 个对象的内存地址是否相等,String 类对该方法进行了重写以用于比较字符串的值是否相等。
*/
public boolean equals(Object obj)
/**
* naitive 方法,用于创建并返回当前对象的一份拷贝。
*/
protected native Object clone() throws CloneNotSupportedException
/**
* 返回类的名字实例的哈希码的 16 进制的字符串。建议 Object 所有的子类都重写这个方法。
*/
public String toString()
/**
* native 方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。
*/
public final native void notify()
/**
* native 方法,并且不能重写。跟 notify 一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。
*/
public final native void notifyAll()
/**
* native方法,并且不能重写。暂停线程的执行。注意:sleep 方法没有释放锁,而 wait 方法释放了锁 ,timeout 是等待时间。
*/
public final native void wait(long timeout) throws InterruptedException
/**
* 多了 nanos 参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上 nanos 毫秒。。
*/
public final void wait(long timeout, int nanos) throws InterruptedException
/**
* 跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念
*/
public final void wait() throws InterruptedException
/**
* 实例被垃圾回收器回收的时候触发的操作
*/
protected void finalize() throws Throwable { }
== 和 equals() 的区别
== 对于基本类型和引用类型的作用效果是不同的:
- 对于基本数据类型来说,
==比较的是值。 - 对于引用数据类型来说,
==比较的是对象的内存地址。
因为 Java 只有值传递,所以,对于 == 来说,不管是比较基本数据类型,还是引用数据类型的变量,其本质比较的都是值,只是引用类型变量存的值是对象的地址。
equals() 不能用于判断基本数据类型的变量,只能用来判断两个对象是否相等。equals()方法存在于Object类中,而Object类是所有类的直接或间接父类,因此所有的类都有equals()方法。
Object 类 equals() 方法:
public boolean equals(Object obj) {
return (this == obj);
}
equals() 方法存在两种使用情况:
- 类没有重写
equals()方法 :通过equals()比较该类的两个对象时,等价于通过“==”比较这两个对象,使用的默认是Object类equals()方法。 - 类重写了
equals()方法 :一般我们都重写equals()方法来比较两个对象中的属性是否相等;若它们的属性相等,则返回 true(即,认为这两个对象相等)。
举个例子(这里只是为了举例。实际上,你按照下面这种写法的话,像 IDEA 这种比较智能的 IDE 都会提示你将 == 换成 equals() ):
String a = new String("ab"); // a 为一个引用
String b = new String("ab"); // b为另一个引用,对象的内容一样
String aa = "ab"; // 放在常量池中
String bb = "ab"; // 从常量池中查找
System.out.println(aa == bb);// true
System.out.println(a == b);// false
System.out.println(a.equals(b));// true
System.out.println(42 == 42.0);// true
String 中的 equals 方法是被重写过的,因为 Object 的 equals 方法是比较的对象的内存地址,而 String 的 equals 方法比较的是对象的值。
当创建 String 类型的对象时,虚拟机会在常量池中查找有没有已经存在的值和要创建的值相同的对象,如果有就把它赋给当前引用。如果没有就在常量池中重新创建一个 String 对象。
String类equals()方法:
public boolean equals(Object anObject) {
if (this == anObject) {
return true;
}
if (anObject instanceof String) {
String anotherString = (String)anObject;
int n = value.length;
if (n == anotherString.value.length) {
char v1[] = value;
char v2[] = anotherString.value;
int i = 0;
while (n-- != 0) {
if (v1[i] != v2[i])
return false;
i++;
}
return true;
}
}
return false;
}
hashCode() 有什么用?
hashCode() 的作用是获取哈希码(int 整数),也称为散列码。这个哈希码的作用是确定该对象在哈希表中的索引位置。
hashCode()定义在 JDK 的 Object 类中,这就意味着 Java 中的任何类都包含有 hashCode() 函数。另外需要注意的是: Object 的 hashCode() 方法是本地方法,也就是用 C 语言或 C++ 实现的,该方法通常用来将对象的内存地址转换为整数之后返回。
public native int hashCode();
散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)
为什么要有 hashCode?
我们以“HashSet 如何检查重复”为例子来说明为什么要有 hashCode?
下面这段内容摘自我的 Java 启蒙书《Head First Java》:
当你把对象加入
HashSet时,HashSet会先计算对象的hashCode值来判断对象加入的位置,同时也会与其他已经加入的对象的hashCode值作比较,如果没有相符的hashCode,HashSet会假设对象没有重复出现。但是如果发现有相同hashCode值的对象,这时会调用equals()方法来检查hashCode相等的对象是否真的相同。如果两者相同,HashSet就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。这样我们就大大减少了equals的次数,相应就大大提高了执行速度。
其实, hashCode() 和 equals()都是用于比较两个对象是否相等。
那为什么 JDK 还要同时提供这两个方法呢?
这是因为在一些容器(比如 HashMap、HashSet)中,有了 hashCode() 之后,判断元素是否在对应容器中的效率会更高(参考添加元素进HashSet的过程)!
我们在前面也提到了添加元素进HashSet的过程,如果 HashSet 在对比的时候,同样的 hashCode 有多个对象,它会继续使用 equals() 来判断是否真的相同。也就是说 hashCode 帮助我们大大缩小了查找成本。
那为什么不只提供 hashCode() 方法呢?
这是因为两个对象的hashCode 值相等并不代表两个对象就相等。
那为什么两个对象有相同的 hashCode 值,它们也不一定是相等的?
因为 hashCode() 所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓哈希碰撞也就是指的是不同的对象得到相同的 hashCode )。
总结下来就是 :
- 如果两个对象的
hashCode值相等,那这两个对象不一定相等(哈希碰撞)。 - 如果两个对象的
hashCode值相等并且equals()方法也返回true,我们才认为这两个对象相等。 - 如果两个对象的
hashCode值不相等,我们就可以直接认为这两个对象不相等。
相信大家看了我前面对 hashCode() 和 equals() 的介绍之后,下面这个问题已经难不倒你们了。
为什么重写 equals() 时必须重写 hashCode() 方法?
因为两个相等的对象的 hashCode 值必须是相等。也就是说如果 equals 方法判断两个对象是相等的,那这两个对象的 hashCode 值也要相等。
如果重写 equals() 时没有重写 hashCode() 方法的话就可能会导致 equals 方法判断是相等的两个对象,hashCode 值却不相等。
思考 :重写 equals() 时没有重写 hashCode() 方法的话,使用 HashMap 可能会出现什么问题。
答案:hashMap、HashSet 在比较元素时,会先通过 hashCode 进行比较,相同的情况下再通过 equals 进行比较。所以:
equals 相等的两个对象,hashCode 一定相等
hashCode 相等的两个对象,equals 不一定相等(比如散列冲突的情况)重写了 equals 方法,不重写 hashCode 方法时,可能会出现 equals 方法返回为 true,而 hashCode 方法却返回 false。这样的一个后果会导致在 hashmap、hashSet 等类中存储多个一模一样的对象,这与 java 的思想不符(因为:hashmap 只能有唯一的 key,hashSet 只能有唯一的对象)
总结 :
equals方法判断两个对象是相等的,那这两个对象的hashCode值也要相等。- 两个对象有相同的
hashCode值,他们也不一定是相等的(哈希碰撞)。
更多关于 hashCode() 和 equals() 的内容可以查看:点击查看
Java 常见类之 String
String、StringBuffer、StringBuilder 的区别?
可变性
String 是不可变的(后面会详细分析原因)。
StringBuilder 与 StringBuffer 都继承自 AbstractStringBuilder 类,在 AbstractStringBuilder 中也是使用字符数组保存字符串,不过没有使用 final 和 private 关键字修饰,最关键的是这个 AbstractStringBuilder 类还提供了很多修改字符串的方法比如 append 方法。
abstract class AbstractStringBuilder implements Appendable, CharSequence {
char[] value;
public AbstractStringBuilder append(String str) {
if (str == null)
return appendNull();
int len = str.length();
ensureCapacityInternal(count + len);
str.getChars(0, len, value, count);
count += len;
return this;
}
//...
}
线程安全性
String 中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder 是 StringBuilder 与 StringBuffer 的公共父类,定义了一些字符串的基本操作,如 expandCapacity、append、insert、indexOf 等公共方法。StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁,所以是线程安全的。StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。
性能
每次对 String 类型进行改变的时候,都会生成一个新的 String 对象,然后将指针指向新的 String 对象。StringBuffer 每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StringBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。
对于三者使用的总结:
- 操作少量的数据: 适用
String - 单线程操作字符串缓冲区下操作大量数据: 适用
StringBuilder - 多线程操作字符串缓冲区下操作大量数据: 适用
StringBuffer
String 为什么是不可变的?
public final class String implements java.io.Serializable, Comparable<String>, CharSequence {
private final char value[];
//...
}
🐛 修正 : 我们知道被
final关键字修饰的类不能被继承,修饰的方法不能被重写,修饰的变量是基本数据类型则值不能改变,修饰的变量是引用类型则不能再指向其他对象。因此,final关键字修饰的数组保存字符串并不是String不可变的根本原因,因为这个数组保存的字符串是可变的(final修饰引用类型变量的情况)。
String真正不可变有下面几点原因:
- 保存字符串的数组被
final修饰且为私有的,并且String类没有提供/暴露修改这个字符串的方法。String类被final修饰导致其不能被继承,进而避免了子类破坏String不可变。相关阅读:如何理解 String 类型值的不可变? - 知乎提问open in new window
补充(来自issue 675open in new window):在 Java 9 之后,
String、StringBuilder与StringBuffer的实现改用byte数组存储字符串。public final class String implements java.io.Serializable,Comparable<String>, CharSequence { // @Stable 注解表示变量最多被修改一次,称为“稳定的”。 @Stable private final byte[] value; } abstract class AbstractStringBuilder implements Appendable, CharSequence { byte[] value; }Java 9 为何要将
String的底层实现由char[]改成了byte[]?新版的 String 其实支持两个编码方案: Latin-1 和 UTF-16。如果字符串中包含的汉字没有超过 Latin-1 可表示范围内的字符,那就会使用 Latin-1 作为编码方案。Latin-1 编码方案下,
byte占一个字节(8 位),char占用 2 个字节(16),byte相较char节省一半的内存空间。JDK 官方就说了绝大部分字符串对象只包含 Latin-1 可表示的字符。
如果字符串中包含的汉字超过 Latin-1 可表示范围内的字符,
byte和char所占用的空间是一样的。这是官方的介绍:https://openjdk.java.net/jeps/254 。
String#equals() 和 Object#equals() 有何区别?
String 中的 equals 方法是被重写过的,比较的是 String 字符串的值是否相等。 Object 的 equals 方法是比较的对象的内存地址。
字符串常量池的作用了解吗?
字符串常量池 是 JVM 为了提升性能和减少内存消耗针对字符串(String 类)专门开辟的一块区域,主要目的是为了避免字符串的重复创建。
// 在堆中创建字符串对象”ab“
// 将字符串对象”ab“的引用保存在字符串常量池中
String aa = "ab";
// 直接返回字符串常量池中字符串对象”ab“的引用
String bb = "ab";
System.out.println(aa==bb);// true
更多关于字符串常量池的介绍可以看一下 Java 内存区域详解open in new window 这篇文章。
String s1 = new String("abc");这句话创建了几个字符串对象?
会创建 1 或 2 个字符串对象。
1、如果字符串常量池中不存在字符串对象“abc”的引用,那么会在堆中创建 2 个字符串对象“abc”。
示例代码(JDK 1.8):
String s1 = new String("abc");
对应的字节码:

ldc 命令用于判断字符串常量池中是否保存了对应的字符串对象的引用,如果保存了的话直接返回,如果没有保存的话,会在堆中创建对应的字符串对象并将该字符串对象的引用保存到字符串常量池中。
2、如果字符串常量池中已存在字符串对象“abc”的引用,则只会在堆中创建 1 个字符串对象“abc”。
示例代码(JDK 1.8):
// 字符串常量池中已存在字符串对象“abc”的引用
String s1 = "abc";
// 下面这段代码只会在堆中创建 1 个字符串对象“abc”
String s2 = new String("abc");
对应的字节码:

这里就不对上面的字节码进行详细注释了,7 这个位置的 ldc 命令不会在堆中创建新的字符串对象“abc”,这是因为 0 这个位置已经执行了一次 ldc 命令,已经在堆中创建过一次字符串对象“abc”了。7 这个位置执行 ldc 命令会直接返回字符串常量池中字符串对象“abc”对应的引用。
intern 方法有什么作用 ?
String.intern() 是一个 native(本地)方法,其作用是将指定的字符串对象的引用保存在字符串常量池中,可以简单分为两种情况:
- 如果字符串 s 在字符串常量池中存在对应字面量,则 intern() 方法返回该字面量的地址;
- 如果不存在,则创建一个对应的字面量,并返回该字面量的地址
String 对象与字面量的 intern() 区别
public static void main(String[] args) {
String s1 = new String("字符串");
String s2 = "字符串";
System.out.println(s2 == s2.intern());
System.out.println(s1 == s1.intern());
System.out.println(s1.intern() == s2.intern());
}
结果是 True / False / True,解释如下:
对于字符串字面量 s2 而言,它本身就是字符串常量池中"字符串"常量的引用,因此 s2.intern() 返回的是字符串常量池中“字符串”常量的地址,与 s2 本身是相等的,所以为 true
对于 String 对象 s1 而言,它是一个指向堆空间 String 对象的引用。String 对象中保存着一个 final byte[] 用于存储字符串的 value,该成员又指向了字符串常量池中“字符串”这个字面量。因此调用 s1.intern(),返回的是字符串常量池中"字符串"字面量的地址。s1 本身存的是堆空间 String 对象的地址,因此二者不相等
不管是 String 对象,还是字面量,只要他们的值相等,调用 intern() 都会返回同一个字符串常量池的引用,因此 s1.intern() == s2.intern()
详细说明参考:https://blog.csdn.net/zs357/article/details/121908596
Java 异常类层次结构图

Exception 和 Error 有什么区别?
在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类:
Exception:程序本身可以处理的异常,可以通过catch来进行捕获。Exception又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。Error:Error属于程序无法处理的错误 ,我们没办法通过catch来进行捕获不建议通过catch捕获 。例如 Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。
Checked Exception 和 Unchecked Exception 有什么区别?
Checked Exception 即 受检查异常 ,Java 代码在编译过程中,如果受检查异常没有被 catch或者throws 关键字处理的话,就没办法通过编译。
比如下面这段 IO 操作的代码:

除了RuntimeException及其子类以外,其他的Exception类及其子类都属于受检查异常 。常见的受检查异常有: IO 相关的异常、ClassNotFoundException 、SQLException...。
Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。
RuntimeException 及其子类都统称为非受检查异常,常见的有(建议记下来,日常开发中会经常用到):
NullPointerException(空指针错误)IllegalArgumentException(参数错误比如方法入参类型错误)NumberFormatException(字符串转换为数字格式错误,IllegalArgumentException的子类)ArrayIndexOutOfBoundsException(数组越界错误)ClassCastException(类型转换错误)ArithmeticException(算术错误)SecurityException(安全错误比如权限不够)UnsupportedOperationException(不支持的操作错误比如重复创建同一用户)- ......

Throwable 类常用方法有哪些?
String getMessage(): 返回异常发生时的简要描述String toString(): 返回异常发生时的详细信息String getLocalizedMessage(): 返回异常对象的本地化信息。使用Throwable的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与getMessage()返回的结果相同void printStackTrace(): 在控制台上打印Throwable对象封装的异常信息
try-catch-finally 与 try-with-resources 的区别
都知道,所有被打开的系统资源,比如流、文件或者 Socket 连接等,都需要开发者手动关闭,否则随着程序的不断运行,资源泄露将会累积成重大的生产事故。
先来说说 try-catch-finally:
try-catch-finally 结构是 Java 提供来处理异常的,finally 中执行关闭资源的方法。它的语法结构如下:
try{
//代码执行区域
}catch(Exception e){
//异常处理区域
}finally{
//无论如何都会执行的代码区域
}
注意:不管 try 和 catch 中做了什么处理,finally 中无论如何都是会执行。
然后说说 try-with-resource:
try-with-resource 是 JDK1.7 引入的一个新的异常处理机制,它能够很容易地关闭在 try-catch 语句块中使用的资源。try-with-resources 语句确保了每个资源在语句结束时关闭。所有实现了 java.lang.AutoCloseable 接口(其中,它包括实现了 java.io.Closeable 的所有对象)的类,可以使用作为资源。
关闭多个资源举例(一个和多个类似):
public class Exception {
public static void main(String[] args) {
try(Some some = new Some();Other other = new Other()) {
some.doSome();
other.doOther();
} catch(Exception ex) {
ex.printStackTrace();
}
}
}
class Some implements AutoCloseable {
void doSome() {
System.out.println("1");
}
@Override
public void close() throws Exception {
System.out.println("some is closed");
}
}
class Other implements AutoCloseable {
void doOther() {
System.out.println("2");
}
@Override
public void close() throws Exception {
System.out.println("other is closed");
}
}
输出结果:
1
2
other is closed
some is closed
可以从输出结果中看到在 try 语句中越是最后使用的资源,越是最早被关闭。
在 JDK 1.9 中 try-with-resource(声明的变量)做出了改进,可以直接使用。
final Resource resource1 = new Resource("resource1");
Resource resource2 = new Resource("resource2");
try (resource1;resource2) {
// 可以直接使用 resource1 and resource 2.
}
最后总结两种的区别:
-
try-catch-finally:没有限制条件,在 JDK 7 之前,各种资源操作需要在 finally 里面手动关闭,还可以用于执行其他代码块;
-
try-with-resources:在 JDK 7 中引入 try-with-resources,代码更加简洁,实现了资源自动关闭。
结论:
处理必须关闭的资源时,始终要优先考虑使用 try-with-resources,而不是 try-finally。
这样得到的代码将更简洁,清晰,产生的异常也更有价值,这些也是 try-finally 无法做到的。
都看到最后了,右下角来个赞鸭!-.- 欢迎评论留言~

Java 面试基础知识总结

浙公网安备 33010602011771号