【项目实战】多维度特征处理
视频链接:https://www.bilibili.com/video/BV1Y7411d7Ys?p=7
数据集的下载
通过百度网盘下载至代码的文件夹
链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw
提取码:cxe4
多重特征
这里的数据是一份8维的关于糖尿病的数据,希望判断是否得了糖尿病
这里特征处理的代码如下,(和之前的代码大同小异,不做过多叙述)
import numpy as np
import torch
import matplotlib.pyplot as plt
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32) //读取数据,逗号作为分隔符,然后转换成32位浮点型
x_data = torch.from_numpy(xy[:, :-1]) //行全读,列最后一列不要
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 2)
self.linear4 = torch.nn.Linear(2, 1) //四层网络
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
x = self.sigmoid(self.linear4(x))
return x
epoch_list = []
loss_list = [] //用来接收每一次训练的损失值
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(100):
y_pred = model(x_data)
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()
结果
图像是损失函数随着训练次数的变化


其实我还试了一下20w次训练的
图像有点好玩的

本文来自博客园,作者:Lugendary,转载请注明原文链接:https://www.cnblogs.com/lugendary/p/16142250.html

浙公网安备 33010602011771号