4. 使用SpringBoot快速集成LangChain4j, 实现AI的丝滑调用
1. 简介
前几章简单测试了一下LangChain4J的特性, 本章使用SpringBoot快速集成LangChain4J, 实现丝滑调用大模型, 往期内容传送门
LangChain4J官方提供了SpringBoot Starter, 本章就使用Starter进行快速集成.
2. 环境信息
使用SDK版本信息如下:
Java: 21
SpringBoot: 3.4.5
LangChain4j: 1.0.1
LLM: (使用在线的百炼(阿里)平台)
embedding模型: text-embedding-v3
chat模型: qwen-plus
PGVector(postgresql版本的向量数据库, 文章最后有相关的docker-compose): 0.8.0-pg17
3. Maven
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>3.4.5</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.ldx</groupId>
<artifactId>langchain-test</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>langchain-test</name>
<description>langchain-test</description>
<properties>
<java.version>21</java.version>
<guava.version>33.0.0-jre</guava.version>
</properties>
<dependencyManagement>
<dependencies>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-bom</artifactId>
<version>1.0.1</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!-- 这里使用的是OpenAI Starter, 因为百炼平台的模型支持OpenAI, 如果本地使用Ollama部署的模型, 导入其对应的Starter即可 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai-spring-boot-starter</artifactId>
</dependency>
<!-- 该包实现了AI Services的自动注入, 如果想自己声明AI Services去掉该依赖即可 -->
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-open-ai</artifactId>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>${guava.version}</version>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-reactor</artifactId>
</dependency>
<dependency>
<groupId>dev.langchain4j</groupId>
<artifactId>langchain4j-pgvector</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
</plugin>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>
4. 配置信息
4.1 application.yml
通过在配置文件中声明模型信息 即可实现对应模型的自动注入
langchain4j:
open-ai:
# 普通聊天模型
chat-model:
api-key: ${LLM_API_KEY}
model-name: qwen-plus
base-url: https://dashscope.aliyuncs.com/compatible-mode/v1
# 流式相应模型
streaming-chat-model:
api-key: ${LLM_API_KEY}
model-name: qwen-plus
base-url: https://dashscope.aliyuncs.com/compatible-mode/v1
# 向量模型
embedding-model:
api-key: ${LLM_API_KEY}
model-name: text-embedding-v3
base-url: https://dashscope.aliyuncs.com/compatible-mode/v1
4.2 配置类
主要声明了
- 聊天记忆提供类, 关联了记忆存储对象
- 向量存储对象,这里使用的是pgvector
- 内容检索器(RAG-检索实现)
package com.ldx.langchaintest.config;
import com.ldx.langchaintest.service.PersistentChatMemoryStore;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.memory.chat.ChatMemoryProvider;
import dev.langchain4j.memory.chat.MessageWindowChatMemory;
import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.rag.content.retriever.ContentRetriever;
import dev.langchain4j.rag.content.retriever.EmbeddingStoreContentRetriever;
import dev.langchain4j.store.embedding.EmbeddingStore;
import dev.langchain4j.store.embedding.pgvector.DefaultMetadataStorageConfig;
import dev.langchain4j.store.embedding.pgvector.PgVectorEmbeddingStore;
import dev.langchain4j.store.memory.chat.InMemoryChatMemoryStore;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* config
*
* @author ludangxin
* @date 2025/5/15
*/
@Configuration
public class AiConfiguration {
/**
* 聊天记忆 提供者
*
* @param persistentChatMemoryStore 对话内容持久化对象
* @return 对话记忆 provider
*/
@Bean
public ChatMemoryProvider jdbcChatMemoryProvider(PersistentChatMemoryStore persistentChatMemoryStore) {
return memoryId -> MessageWindowChatMemory
.builder()
.id(memoryId)
// 这里使用了自定义的会话存储对象, 可以通过其实现对话过程内容的持久化
// 本地测试的话可以使用 InMemoryChatMemoryStore对象实现内存存储
.chatMemoryStore(persistentChatMemoryStore)
.maxMessages(5)
.build();
}
/**
* 向量存储对象
*
* @param embeddingModel 向量模型
* @return 向量存储对象
*/
public EmbeddingStore<TextSegment> embeddingStore(EmbeddingModel embeddingModel) {
return PgVectorEmbeddingStore
.builder()
.host("localhost") // 必需:PostgresSQL 实例的主机
.port(5431) // 必需:PostgresSQL 实例的端口
.database("postgres") // 必需:数据库名称
.user("root") // 必需:数据库用户
.password("123456") // 必需:数据库密码
.table("my_embeddings") // 必需:存储嵌入的表名
.dimension(embeddingModel.dimension()) // 必需:嵌入的维度
.metadataStorageConfig(DefaultMetadataStorageConfig.defaultConfig()) // 元数据存储配置
.build();
}
/**
* 内容检索器
*
* @param embeddingModel 向量模型
* @return 内容检索器
*/
@Bean
public ContentRetriever contentRetriever(EmbeddingModel embeddingModel) {
return EmbeddingStoreContentRetriever
.builder()
.embeddingStore(this.embeddingStore(embeddingModel))
.embeddingModel(embeddingModel)
.maxResults(10)
.minScore(0.65)
.build();
}
}
4.3 聊天记忆持久化
实现了ChatMemoryStore接口, 这里测试使用的是map存储的, 生产环境中可以持久化到数据库中
chat过程中消息会通过ChatMemory调用ChatMemoryStore对聊天内容进行持久化/获取
package com.ldx.langchaintest.service;
import com.google.common.collect.ArrayListMultimap;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.store.memory.chat.ChatMemoryStore;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class PersistentChatMemoryStore implements ChatMemoryStore {
final ArrayListMultimap<Object, ChatMessage> messagesStore = ArrayListMultimap.create();
@Override
public List<ChatMessage> getMessages(Object memoryId) {
return messagesStore.get(memoryId);
}
@Override
public void updateMessages(Object memoryId, List<ChatMessage> messages) {
messagesStore.put(memoryId, messages.getLast());
}
@Override
public void deleteMessages(Object memoryId) {
messagesStore.removeAll(memoryId);
}
}
4.4 tools
package com.ldx.langchaintest.tools;
import dev.langchain4j.agent.tool.P;
import dev.langchain4j.agent.tool.Tool;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;
/**
* tools
*
* @author ludangxin
* @date 2025/5/15
*/
@Slf4j
@Component
public class SysTools {
@Tool("根据用户的名称获取对应的code")
public String getUserCodeByUsername(@P("用户名称") String username) {
log.info("get user code by username:{}", username);
if ("张铁牛".equals(username)) {
return "003";
}
return "000";
}
}
5. 核心源码
5.1 Ai Services
@AiService 将实现AiService的自动注入
wiringMode = EXPLICIT: 用户自己指定相关的bean 缺省:
wiringMode = AUTOMATIC: 项目启动时自动在环境中找对应的对象实现注入,如果有多个(比如:chatModel),启动报错这里举了几种典型的场景 如
- 普通聊天 chat()
- 聊天记忆&流式输出 chatWithStream()
- 提取指定内容并将结果结构化 extractPerson()
- 提示词占位替换 mockUsername()
- rag text-sql chatWithSql()
package com.ldx.langchaintest.service;
import com.ldx.langchaintest.domain.Person;
import dev.langchain4j.service.MemoryId;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.V;
import dev.langchain4j.service.spring.AiService;
import reactor.core.publisher.Flux;
import java.util.List;
import static dev.langchain4j.service.spring.AiServiceWiringMode.EXPLICIT;
/**
* ai svc
*
* @author ludangxin
* @date 2025/5/16
*/
@AiService(wiringMode = EXPLICIT,
chatModel = "openAiChatModel",
streamingChatModel = "openAiStreamingChatModel",
chatMemoryProvider = "chatMemoryProvider",
contentRetriever = "contentRetriever",
tools = {"sysTools"})
public interface AiSqlAssistantService {
String chat(String message);
@SystemMessage("👉 将文本改写成类似小红书的 Emoji 风格")
Flux<String> chatWithStream(@MemoryId String memoryId, @UserMessage String message);
@SystemMessage("请在用户提供的文本中提取出人员信息")
Person extractPerson(@UserMessage String message);
@UserMessage("需要你帮我mock人员姓名, 帮我生成{{total}}个")
List<String> mockUsername(@V("total") Integer total);
@SystemMessage("你是一名sql分析专家 我会将sql相关的ddl给你, 需要你根据ddl生成合理且可执行的sql语句并返回")
String chatWithSql(@MemoryId String memoryId, @UserMessage String message);
}
5.2 Controller
package com.ldx.langchaintest.controller;
import com.ldx.langchaintest.domain.Person;
import com.ldx.langchaintest.service.AiSqlAssistantService;
import dev.langchain4j.data.document.Document;
import dev.langchain4j.data.document.DocumentSplitter;
import dev.langchain4j.data.document.loader.ClassPathDocumentLoader;
import dev.langchain4j.data.document.splitter.DocumentByRegexSplitter;
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.embedding.EmbeddingModel;
import dev.langchain4j.model.output.Response;
import dev.langchain4j.store.embedding.EmbeddingStore;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import java.io.IOException;
import java.util.List;
/**
* ai controller
*
* @author ludangxin
* @date 2025/5/16
*/
@Slf4j
@RestController
@RequestMapping("/ai/chat")
@RequiredArgsConstructor
public class AiServiceController {
private final EmbeddingModel embeddingModel;
private final EmbeddingStore<TextSegment> embeddingStore;
private final AiSqlAssistantService aiSqlAssistantService;
@GetMapping("/test")
public String test() {
return aiSqlAssistantService.chat("你是谁");
}
@GetMapping
public String chat(@RequestParam String userMessage) {
return aiSqlAssistantService.chat(userMessage);
}
@GetMapping(value = "/{id}/stream/memory", produces = "text/stream;charset=utf-8")
public Flux<String> streamMemory(@PathVariable String id, @RequestParam String userMessage) {
final Flux<String> chatResponse = aiSqlAssistantService.chatWithStream(id, userMessage);
return chatResponse
.doOnNext(partial -> log.info("chat stream partial data:{}", partial))
.doOnError(e -> log.error("stream output error", e))
.doOnComplete(() -> log.info("chat stream complete"));
}
@GetMapping("/extract/person")
public Person extractPerson(@RequestParam String userMessage) {
return aiSqlAssistantService.extractPerson(userMessage);
}
@GetMapping("/mock/username")
public List<String> mockUsername(@RequestParam(defaultValue = "0") Integer total) {
return aiSqlAssistantService.mockUsername(total);
}
@GetMapping(value = "/embedding")
public String aiEmbedding() throws IOException {
final Document document = ClassPathDocumentLoader.loadDocument("student_ddl.sql");
// 创建 SQL 感知的文档分割器
DocumentSplitter splitter = new DocumentByRegexSplitter(";",";",
2000, // 最大片段长度
100 // 重叠长度
);
final List<TextSegment> textSegments = splitter.split(document);
final Response<List<Embedding>> embedResult = embeddingModel.embedAll(textSegments);
final List<Embedding> content = embedResult.content();
embeddingStore.addAll(content, textSegments);
return "success";
}
@GetMapping(value = "/{id}/sql/generate")
public String aiEmbedding(@PathVariable String id, @RequestParam String userMessage) {
return aiSqlAssistantService.chatWithSql(id, userMessage);
}
}
6. 测试
6.1 测试chat

6.2 测试tool

6.3 测试流式&聊天记忆
第一次会话:

后端日志如下

第二次会话:

6.4 测试抽取用户信息

6.5 测试mock

6.6 测试embedding

数据库中信息如下:

6.7 测试text2sql

7. 小结
本章通过使用SpringBoot实现快速集成LangChain4J, 通过简单的配置实现了AI的调用, 总体使用感受还不错, 虽然是刚发布的正式版但是整体的集成、方法调用都挺丝滑的, 到这里这关于LangChain4J的全部内容已经完结了, 后续会出个SpringAI正式版的体验对比,感兴趣的可以关注下.
8. 源码
测试过程中的代码已全部上传至github, 欢迎点赞收藏 仓库地址: https://github.com/ludangxin/langchain4j-test
PGVector
version: '3'
services:
pgvector:
container_name: pgvector
restart: "no"
image: pgvector/pgvector:0.8.0-pg17
privileged: true
ports:
- 5431:5432
environment:
POSTGRES_USER: root
POSTGRES_PASSWORD: 123456
PGDATA: /var/lib/postgresql/data/
volumes:
- ./data:/var/lib/postgresql/data/

浙公网安备 33010602011771号