摘要:
联邦学习是现代大规模机器学习中的一个关键场景。在这种情况下,训练数据仍然分布在大量的客户机上,这些客户机可能是电话、其他移动设备或网络传感器,并且在不通过网络传输客户机数据的情况下学习集中式模型。此方案中使用的标准优化算法是联邦平均(FedAvg)。然而,当客户端数据是异质的(这在应用程序中是典型的)时,FedAvg并不能保证良好的收敛性。这是因为客户机上的本地更新可能会发散开来,这也解释了FedAvg在实践中的缓慢收敛和难以调整的特性。本文提出了一种新的随机控制平均算法(SCAFFOLD),该算法利用控制变量来减少不同客户之间的漂移。我们证明了该算法需要的通信次数明显减少,并且有良好的收敛性保证。 阅读全文
posted @ 2019-11-11 21:15
穷酸秀才大草包
阅读(1271)
评论(0)
推荐(0)