2019年12月18日

摘要: 联邦学习允许边缘设备协同学习共享模型,同时将训练数据保留在设备上,将模型训练能力与将数据存储在云中的需求分离开来。针对例如卷积神经网络(CNNs)和LSTMs等的现代神经网络结构的联邦学习问题,我们提出了联邦匹配平均(FedMA)算法。FedMA通过对特征提取到的具有相似特征的隐元素(即卷积层的通道;LSTM的隐状态;全连接层的神经元)进行匹配和平均,按层构建共享全局模型。我们的实验表明,FedMA训练的深度CNN和LSTM结构在实际数据集上优于流行的最新联邦学习算法,同时提高了通信效率。 阅读全文
posted @ 2019-12-18 19:11 穷酸秀才大草包 阅读(4589) 评论(3) 推荐(2)
摘要: 联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。 阅读全文
posted @ 2019-12-18 19:09 穷酸秀才大草包 阅读(2005) 评论(0) 推荐(0)

导航