爬虫必知必会(5)_scrapy框架_基础
一、移动端数据的爬取
- 基于某一款抓包工具,fiddler,青花瓷,miteproxy
- fillder进行一个基本的配置:tools->options->connection->allow remote ...
- http://fillder所在pc机的ip:58083/:访问到一张提供了证书下载功能的页面
- fiddler所在的机器和手机在同一网段下:在手机浏览器中访问http://fillder所在pc机的ip:58083/
- 获取子页面进行证书的下载和安装(证书信任的操作)
- 配置你的手机的代理:将手机的代理配置成fiddler所对应pc机的ip和fillder自己的端口
- 就可以让fiddler捕获手机发起的http和https的请求
二、scrapy,pyspider
- 什么是框架?如何学习框架?
- 就是一个集成了各种功能且具有很强通用性(可以被应用在各种不同的需求中)的一个项目模板.
- 我们只需要学习框架中封装好的相关功能的使用即可.
1.scrapy集成了哪些功能:
- 高性能的数据解析操作,持久化存储操作,高性能的数据下载的操作.....
2.环境的安装:
- pip3 install wheel
- 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
- 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
- pip3 install pywin32
- pip3 install scrapy
3.scrapy的基本使用
- 创建一个工程:scrapy startproject firstBlood
- 必须在spiders这个目录下创建一个爬虫文件
- cd proName
- scrapy genspider spiderName www.xxx.com
- 执行工程:scrapy crawl spiderName
- settings.py:
- 不遵从robots协议
- 进行UA伪装
- 进行日志等级设定:LOG_LEVEL = 'ERROR'
4.持久化存储:
- 基于终端指令:
- 特性:只可以将parse方法的返回值存储到本地的磁盘文件中
- 指令:scrapy crawl spiderName -o filePath
- 基于管道:实现流程
1.数据解析
2.在item类中定义相关的属性
3.将解析的数据存储或者封装到一个item类型的对象(items文件中对应类的对象)
4.向管道提交item
5.在管道文件的process_item方法中接收item进行持久化存储
6.在配置文件中开启管道
4.1将同一份数据持久化到不同的平台中?
- 分析:
1.管道文件中的一个管道类负责数据的一种形式的持久化存储
2.爬虫文件向管道提交的item只会提交给优先级最高的那一个管道类
3.在管道类的process_item中的return item表示的是将当前管道接收的item返回/提交给下一个即将被执行的管道类
5.在scrapy中如何进行手动请求发送(GET)
- 使用场景:爬取多个页码对应的页面源码数据
- yield scrapy.Request(url,callback)
- 在scrapy中如何进行手动请求发送(POST)
-
data = { #post请求的请求参数 'kw':'aaa' } yield scrapy.FormRequest(url,formdata=data,callback)
6.scrapy五大核心组件的工作流程:
- 引擎(Scrapy)
- 用来处理整个系统的数据流处理, 触发事务(框架核心)
- 调度器(Scheduler)
- 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
- 下载器(Downloader)
- 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
- 爬虫(Spiders)
- 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
- 项目管道(Pipeline)
- 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
1 # -*- coding: utf-8 -*- 2 import scrapy 3 from qiubaiPro.items import QiubaiproItem 4 5 class QiubaiSpider(scrapy.Spider): 6 name = 'qiubai' 7 # allowed_domains = ['www.xxx.com'] 8 start_urls = ['https://www.qiushibaike.com/text/'] 9 def start_requests(self): 10 for url in self.start_urls: 11 yield scrapy.Request(url,callback=self.parse) 12 #基于终端指令的持久化存储操作 13 # def parse(self, response): 14 # div_list = response.xpath('//*[@id="content-left"]/div') 15 # all_data = [] 16 # for div in div_list: 17 # #scrapy中的xpath返回的列表的列表元素一定是Selector对象,我们最终想要的解析的 18 # #数据一定是存储在该对象中 19 # #extract()将Selector对象中data参数的值取出 20 # # author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract() 21 # author = div.xpath('./div[1]/a[2]/h2/text()').extract_first() 22 # #列表直接调用extract表示的是将extract作用到每一个列表元素中 23 # content = div.xpath('./a[1]/div/span//text()').extract() 24 # content = ''.join(content) 25 # dic = { 26 # 'author':author, 27 # 'content':content 28 # } 29 # all_data.append(dic) 30 # return all_data 31 #基于管道的持久化存储 32 # def parse(self, response): 33 # div_list = response.xpath('//*[@id="content-left"]/div') 34 # all_data = [] 35 # for div in div_list: 36 # #scrapy中的xpath返回的列表的列表元素一定是Selector对象,我们最终想要的解析的 37 # #数据一定是存储在该对象中 38 # #extract()将Selector对象中data参数的值取出 39 # # author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract() 40 # author = div.xpath('./div[1]/a[2]/h2/text()').extract_first() 41 # #列表直接调用extract表示的是将extract作用到每一个列表元素中 42 # content = div.xpath('./a[1]/div/span//text()').extract() 43 # content = ''.join(content) 44 # 45 # #将解析的数据存储到item对象 46 # item = QiubaiproItem() 47 # item['author'] = author 48 # item['content'] = content 49 # 50 # #将item提交给管道 51 # yield item #item一定是提交给了优先级最高的管道类 52 53 #将多个页码对应的页面数据进行爬取和解析的操作 54 url = 'https://www.qiushibaike.com/text/page/%d/'#通用的url模板 55 pageNum = 1 56 #parse第一次调用表示的是用来解析第一页对应页面中的段子内容和作者 57 def parse(self, response): 58 div_list = response.xpath('//*[@id="content-left"]/div') 59 all_data = [] 60 for div in div_list: 61 # scrapy中的xpath返回的列表的列表元素一定是Selector对象,我们最终想要的解析的 62 # 数据一定是存储在该对象中 63 # extract()将Selector对象中data参数的值取出 64 # author = div.xpath('./div[1]/a[2]/h2/text()')[0].extract() 65 author = div.xpath('./div[1]/a[2]/h2/text()').extract_first() 66 # 列表直接调用extract表示的是将extract作用到每一个列表元素中 67 content = div.xpath('./a[1]/div/span//text()').extract() 68 content = ''.join(content) 69 70 # 将解析的数据存储到item对象 71 item = QiubaiproItem() 72 item['author'] = author 73 item['content'] = content 74 75 # 将item提交给管道 76 yield item # item一定是提交给了优先级最高的管道类 77 78 if self.pageNum <= 5: 79 self.pageNum += 1 80 new_url = format(self.url%self.pageNum) 81 #手动请求(get)的发送 82 yield scrapy.Request(new_url,callback=self.parse)
# -*- coding: utf-8 -*- # Scrapy settings for qiubaiPro project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'qiubaiPro' USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' SPIDER_MODULES = ['qiubaiPro.spiders'] NEWSPIDER_MODULE = 'qiubaiPro.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'qiubaiPro (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = False LOG_LEVEL = 'ERROR' # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'qiubaiPro.middlewares.QiubaiproSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'qiubaiPro.middlewares.QiubaiproDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'qiubaiPro.pipelines.QiubaiproPipeline': 300, #300表示的是优先级 # 'qiubaiPro.pipelines.MysqlPL': 301, # 'qiubaiPro.pipelines.RedisPL': 302, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class QiubaiproItem(scrapy.Item): # define the fields for your item here like: author = scrapy.Field() #Field可以将其理解成是一个万能的数据类型 content = scrapy.Field()
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html import pymysql from redis import Redis class QiubaiproPipeline(object): fp = None def open_spider(self,spider): print('开始爬虫......') self.fp = open('qiushibaike.txt','w',encoding='utf-8') #使用来接收爬虫文件提交过来的item,然后将其进行任意形式的持久化存储 #参数item:就是接收到的item对象 #该方法每接收一个item就会调用一次 def process_item(self, item, spider): author = item['author'] content= item['content'] self.fp.write(author+':'+content+'\n') return item #item是返回给了下一个即将被执行的管道类 def close_spider(self,spider): print('结束爬虫!') self.fp.close() #负责将数据存储到mysql class MysqlPL(object): conn = None cursor = None def open_spider(self,spider): self.conn = pymysql.Connect(host='127.0.0.1',port=3306,user='root',password='123',db='spider',charset='utf8') print(self.conn) def process_item(self,item,spider): author = item['author'] content = item['content'] sql = 'insert into qiubai values ("%s","%s")'%(author,content) self.cursor = self.conn.cursor() try: self.cursor.execute(sql) self.conn.commit() except Exception as e: print(e) self.conn.rollback() return item def close_spider(self,spider): self.cursor.close() self.conn.close() class RedisPL(object): conn = None def open_spider(self,spider): self.conn = Redis(host='127.0.0.1',port=6379) print(self.conn) def process_item(self,item,spider): self.conn.lpush('all_data',item) #注意:如果将字典写入redis报错:pip install -U redis==2.10.6

浙公网安备 33010602011771号