hdu 1098 Ignatius's puzzle (数论)

Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if no exists that a,then print "no".
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11
100
9999
Sample Output
22
no
43
 转载自:http://blog.sina.com.cn/s/blog_5fe933490100ey6r.html
题目的关键是f(x)=5*x^13+13*x^5+k*a*x;
由于x取任何值都需要能被65整除.那么用数学归纳法.只需找到f(1)成立的a,并在假设f(x)成立的基础上,
证明f(x+1)也成立.
那么把f(x+1)展开,得到5*( ( 13 0 )x^13 + (13 1 ) x^12 ...... .....+(13 13) x^0)+13*( ( 5 0 )x^5+(5 1 )x^4......其实就是二项式展开,这里就省略了 ......+ ( 5 5 )x^0 )+k*a*x+k*a;——————这里的( n m)表示组合数,相信学过2项式定理的朋友都能看明白.

然后提取出5*x^13+13*x^5+k*a*x
则f(x+1 ) = f (x) + 5*( (13 1 ) x^12 ...... .....+(13 13) x^0 )+ 13*( (5 1 )x^4+...........+ ( 5 5 )x^0 )+k*a;

很容易证明,除了5*(13 13) x^0 、13*( 5 5 )x^0 和k*a三项以外,其余各项都能被65整除.
那么也只要求出18+k*a能被65整除就可以了.
而f(1)也正好等于18+k*a

所以,只要找到a,使得18+k*a能被65整除,也就解决了这个题目.

 
代码如下:
 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define ll long long
 4 
 5 int main()
 6 {
 7     int k,a,res;
 8     while(cin >> k)
 9     {
10         bool flag = 0;
11         for(int a = 0;a < 66;a++)
12         {
13             res = 18 + k * a;
14             if(res % 65 == 0)
15             {
16                 cout << a << endl;
17                 flag = 1;
18                 break;
19             }
20         }
21         if(flag == 0)
22         cout << "no" << endl;
23     }
24     return 0;
25 }

 

posted @ 2019-02-11 13:30  lu_nacy  阅读(88)  评论(0)    收藏  举报