20191305李天琦第五章学习笔记

20191305李天琦第五章学习笔记

摘要:本章讨论了定时器和定时器服务;介绍了硬件定时器的原理和基于Intel x86的PC中的硬件定时器;讲解了CPU操作和中断处理;描述了Linux中与定时器相关的系统调用、库函数和定时器服务命令;探讨了进程间隔定时器、定时器生成的信号,并通过示例演示了进程间隔定时器。编程项目的目的是要在一个多任务处理系统中实现定时器、定时器中断和间隔定时器。多任务处理系统作为—个Linux进程运行,该系统是Linux进程内并发任务的一个虚拟 CPU。Linux 进程的实时模式间隔定时器被设计为定期生成SIGALRM信号,充当虚拟CPU的定时器中断,虚拟CPU使用SIGALRM信号捕捉器作为定时器的中断处理程序。该项目可让读进程通过定时器队列实现任务间隔定时器,还可让读进程使用Linux 信号掩码来实现临界区,以防止各项任务和中断处理程序之间出现竞态条件。

5.1硬件定时器

定时器是由时钟源和可编程计数器组成的硬件设备。时钟源通常是一个晶体振荡器,会产生周期性电信号,以精确的频率驱动计数器。用一个倒计时值对计数器进行编程,每个时钟信号减1。当计数减为0时,计数器向CPU生成一个定时器中断、将计数值重新加载到计数器中,并重复倒计时。计数器周期称为定时器刻度,是系统的基本计时单元。

5.2个人计算机定时器

(1)实时时钟(RTC):RTC由一个小型备用电池供电。即使在个人计算机关机时,它也能连续运行。它用于实时提供时间和日期信息。当Linux启动时,它使用RTC更新系统时间变量,以与当前时间保持一致。在所有类Unix 系统中,时间变量是一个长整数,包含从1970年1月1日起经过的秒数。

(2)可编程间隔定时器(PIT)(Wang 2015)∶PIT是与CPU分离的一个硬件定时器。可对它进行编程,以提供以毫秒为单位的定时器刻度。在所有I/O设备中,PIT 可以最高优先级 IRQ0中断。PIT定时器中断由Linux 内核的定时器中断处理程序来处理,为系统操作提供基本的定时单元,例如进程调度、进程间隔定时器和其他许多定时事件。

(3)多核CPU 中的本地定时器(Intel 1997;Wang 2015))∶在多核CPU中,每个核都是一个独立的处理器,它有自己的本地定时器,由 CPU时钟驱动。

(4)高分辨率定时器∶大多数电脑都有一个时间戳定时器(TSC)由系统时钟驱动。它的内容可通过64 位 TSC寄存器读取。由于不同系统主板的时钟频率可能不同,TSC不适合作为实时设备,但它可提供纳秒级的定时器分辨率。—些高端个人计算机可能还配备有专用高速定时器,以提供纳秒级定时器分辨率。

5.3CPU操作

每个CPU都有一个程序计数器(PC),也称为指令指针(IP),以及一个标志或状态寄存器(SR)、一个堆栈指针(SP)和几个通用寄存器,当 PC指向内存中要执行的下一条指令时,SR包含 CPU 的当前状态,如操作模式、中断掩码和条件码,SP指向当前堆栈栈顶。堆栈是CPU用于特殊操作(如 push、pop调用和返回等)的一个内存区域。CPU操作可通过无限循环进行建模。

while (power-on){

(1).  fetch instruction:load*PC as instruction,increment PC to point to the

next instruction in memory;

(2).  decode instruction: interpret the instruction's operation code and

generate operandis;

(3).  execute instruction: perform operation on operands,write results to

memory if needed; execution may use the stack,implicitly change PC, etC.

(4) .  check for pending interrupts; may handle interrupts;

}

5.4中断处理

外部设备(如定时器)的中断被馈送到中断控制器的预定义输入行(Intel 1990;Wang 2015),按优先级对中断输入排序,并将具有最高优先级的中断作为中断请求(IRQ)路由到 CPU。对于每个中断,可以编程中断控制器以生成一个唯一编号,叫作中断向量,标识中断源。在获取中断向量号后,CPU用它作为内存中中断向量表(AMD64 20I1)中的条目索引,条目包含一个指向中断处理程序入口地址的指针来实际处理中断。当中断处理结束时,CPU恢复指令的正常执行。

5.5时钟服务函数

1.gettimeofday-settimeofday

#include <sys/time.h>


int gettimeofday(struct timeval*tv,struct timezone *tz);


int settimeofday(const struct timeval *tv,const struct timezone *tz);

这些是对Linux内核的系统调用。第一个参数tv指向一个timeval结构体

struct timeval {
time_t   tv_BeC;    /* secondg */tV_ugec;
suseConds_t   tv_usec    /* microseconds * /);

第二个参数 timezone已过期,应设置为NULL。gettimeofday()函数用于返回当前时间(当前秒的秒和微秒)。settimeofday(函数用于设置当前时间。在 Unix/Linux中,时间表示自1970年1月1日00∶00∶00起经过的秒数。它可以通过库函数 ctime(&time)转换为日历形式。

2.time系统调用

time_t time(time_t *t)

以秒为单位返回当前时间。如果参数t不是NULL,还会将时间存储在t指向的内存中。time 系统调用具有一定的局限性,只提供以秒为单位的分辨率,而不是以微秒为单位。

3.times系统调用

clock_t times(struct tms *buf);

可用于获取某进程的具体执行时间。它将进程时间存储在 struct tms buf 中,即∶

struct tms{

clock t tms utime;  // user mode time

      clock_t tms_stime; // system mode time

clock__t tms_cutime; // user time of children

clock_t tms_cstime;   // system time of children

);

4.time和date命令

date:打印或设置系统日期和时间。

time:报告进程在用户模式和系统模式下的执行时间和总时间。

hwclock:查询并设置硬件时钟(RTC),也可以通过 BIOS来完成。

5.6间隔定时器

Linux为每个进程提供了三种不同类型的间隔计时器,可用作进程计时的虚拟时钟。间隔定时器由setitimer()系统调用创建。getitimer()系统调用返回间隔定时器的状态。

int getitimer(int which, struct itimerval *curr_value);

int setitimer(int which,const struct itimerval *new_value,

struct itimerva1 *old_value);

各间隔定时器在参数 which指定的不同时间域中工作。当间隔定时器定时到期时,会向进程发送一个信号,并将定时器重置为指定的间隔值(如果是非零数)。一个信号就是发送给某个进程进行处理的一个数字(1到31)。有3类间隔定时器,分别是:

(1)ITIMER_REAL:实时减少,在到期时生成一个SIGALRM(14)信号。

(2)ITIMER_VIRTUAL:仅当进程在用户模式下执行时减少,在到期时生成一个SIGVTALRM(26)信号。

(3)ITIMER PROF:当进程正在用户模式和系统(内核)模式下执行时减少。这类间隔定时器与ITIMER_VIRTUAL结合使用,通常用于分析应用程序在用户模式和内核模式下花费的时间。

5.7REAL模式间隔定时器

VIRTUAL和PROF模式下的间隔计时器仅在执行进程时才有效。这类定时器的信息可保存在各进程的PROC结构体中。(硬件)定时器中断处理程序只需要访问当前运行进程的PROC结构体,就可以减少定时器计时,在定时结束时重新加载定时器计时,并向进程生成一个信号。操作系统内核不必使用额外的数据结构来处理进程的VIRTUAL 和 PROF定时器。但是,REAL模式间隔定时器各不相同,因为无论进程是否正在执行,它们都必须由定时器中断处理程序来更新。因此,操作系统内核必须使用额外的数据结构来处理进程的 REAL 模式定时器,并在定时器到期或被取消时采取措施。在大多数操作系统内核中,使用的数据结构都是定时器队列。

posted @ 2021-11-07 18:55  20191305李天琦  阅读(41)  评论(0编辑  收藏  举报