将自己的数据集转换为cifar数据集格式
# -*- coding: utf-8 -*-
"""
@author: zhangjiaqing 有借鉴
"""
import numpy as np
import chardet
from PIL import Image
import operator
from os import listdir
import sys
import pickle
import random
def unpickle(file):
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='latin-1')
return dict
#cc=unpickle("./dataset/cifar-10/cifar-10-batches-py/data_batch_1")
#print(cc)
data={}
list1=[]
list2=[]
list3=[]
#将图片转化为32*32的三通道图片
def img_tra():
for k in range(0,num):
currentpath=folder+"/"+imglist[k]
im=Image.open(currentpath)
#width=im.size[0]
#height=im.size[1]
x_s=32
y_s=32
out = im.resize((x_s,y_s),Image.ANTIALIAS)
out.save(folder_ad+"/"+str(imglist[k]))
def addWord(theIndex,word,adder):
theIndex.setdefault(word,[]).append(adder)
def seplabel(fname):
filestr=fname.split(".")[0]
label=int(filestr.split("_")[0]) #图片的命名 _前面是类别
return label
def mkcf():
global data
global list1
global list2
global list3
for k in range(0,num):
currentpath=folder_ad+"/"+imglist[k]
im=Image.open(currentpath)
with open(binpath, 'a') as f:
for i in range (0,32):
for j in range (0,32):
cl=im.getpixel((i,j))
list1.append(cl[0]) #R
for i in range (0,32):
for j in range (0,32):
cl=im.getpixel((i,j))
#with open(binpath, 'a') as f:
#mid=str(cl[1])
#f.write(mid)
list1.append(cl[1]) #G
for i in range (0,32):
for j in range (0,32):
cl=im.getpixel((i,j))
list1.append(cl[2]) ##B
list2.append(list1)
list1=[]
f.close()
print("image"+str(k+1)+"saved.")
list3.append(imglist[k]) #name of pictures
arr2=np.array(list2,dtype=np.uint8)
data['batch_label']='training batch 5 of 5' #training batch 1 of 5 testing batch 1 of 1
data.setdefault('labels',label)
data.setdefault('data',arr2)
data.setdefault('filenames',list3)
output = open(binpath, 'wb')
pickle.dump(data, output)
output.close()
folder="./cloud/train_batch_5" #自己图片的路径 train_batch_5 test
folder_ad="./cloud/train_batch_5_ad" #将图片转化为32*32的三通道图片的路径 train_batch_5_ad test_ad
imglist=listdir(folder) #这里原作者好像写错了,我自行修改了,目测现在是对的
num=len(imglist)
img_tra()
label=[]
for i in range (0,num):
label.append(seplabel(imglist[i]))
binpath="./dataset/cloud/cloud-5-batches-py/data_batch_5" #保存的路径 data_batch_5 test_batch
print(binpath)
mkcf()
转的结果:

解释一下为什么这里少了batch.meta,感觉这里的信息没什么用,如果是自己的数据集,可以直接写一句代码就行:
classes = ['A', 'B', 'C', 'D', 'E']
注意自己数据集图片的命名:‘_‘前面是类别

有什么错误欢迎大家在留言区交流指正!感谢!

浙公网安备 33010602011771号