VMware workstation 15+ Ubuntu 19.10

 

1.按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译

第一个链接通过修改hosts文件获得

2.基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

(1)在linux-5.4.34下有mykernel目录,进入该目录,其中mymain.c 是内核运行的程序。当前有一个虚拟的CPU执行C代码的上下文环境,mymain.c中的代码在不停地执行。同时有一个中断处理程序的上下文环境,周期性地产生的时钟中断信号,能够触发myinterrupt.c中的代码。

(2) 修改代码

mypcb.h头文件

⾸先在mykernel⽬录下增加⼀个 mypcb.h头⽂件,

定义Thread结构体,其中包括指令指针ip和堆栈指针sp。

定义结构体变量PCB用来描述进程的各个参数。

声明调度函数my_schedule.

/*定义最大进程数*/
#define MAX_TASK_NUM        4
/*定义了堆栈空间大小 */
#define KERNEL_STACK_SIZE   1024*2
/* CPU-specific state of this task 
定义了一个结构体用来保存当前ip和sp */
struct Thread {
    unsigned long        ip;
    unsigned long        sp;
};

typedef struct PCB{
    int pid; /* 进程号*/
    volatile long state;    /* 进程状态 -1 unrunnable, 0 runnable, >0 stopped */
    unsigned long stack[KERNEL_STACK_SIZE]; /* 内存堆栈大小 */
    /* CPU-specific state of this task */
    struct Thread thread; /* 上述结构体 */
    unsigned long    task_entry; /* 程序入口 */
    struct PCB *next; /* 链表,将进程控制块串联起来 */
}tPCB;

void my_schedule(void); /* 声明进程调度函数 */

 

mymain.c中的my_start_kernel函数

#include "mypcb.h"


tPCB task[MAX_TASK_NUM]; //进程队列
tPCB * my_current_task = NULL; //当前进程
volatile int my_need_sched = 0;//进程调度标志


void my_process(void);


void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* 初始化0号进程 */
    task[pid].pid = pid;
    task[pid].state = 0;/* 0号进程运行 */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];
    /*创建更多进程*/
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = 0;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
      
        "movq %1,%%rsp\n\t"  /* 将当前进程的栈顶指针sp值赋值给rsp寄存器中*/
        "pushq %1\n\t"          /* push rbp */
        "pushq %0\n\t"          /* push task[pid].thread.ip */
        "ret\n\t"              /* pop task[pid].thread.ip to rip */
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)   /* input c or d mean %ecx/%edx*/
    );
}

void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }
    }
}

 

myinterrupt.c

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];

extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
* Called by timer interrupt.
*/
/* void my_timer_handler(void)
{
pr_notice("\n>>>>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<<<<<<<<\n\n");
}
*/

void my_timer_handler(void)
{
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = 1;
}
time_count ++ ;
return;
}


void my_schedule(void)
{
tPCB * next;
tPCB * prev;


if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to next process */
asm volatile(
"pushq %%rbp\n\t" /* save rbp of prev */
"movq %%rsp,%0\n\t" /* save rsp of prev */
"movq %2,%%rsp\n\t" /* restore rsp of next */
"movq $1f,%1\n\t" /* save rip of prev */
"pushq %3\n\t"
"ret\n\t" /* restore rip of next */
"1:\t" /* next process start here */
"popq %%rbp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}

首先创建一个0号的进程,并进行初始化,然后用一个for循环又创建了3个进程,并用链表连起这四个进程。

之后这段代码又对寄存器EIP,EBP,ESP进行初始化,先将堆栈指针sp赋给了ESP寄存器,然后将堆栈指针sp内容压栈,之后将指令指针ip的内容也压栈,下一条指令是ret,它是将当前栈中ESP所指的内容出栈到EIP中,当前ESP所指的内容就是前一条指令压栈进去的ip的值,现在使得EIP寄存器的内容就是进程0的入口地址(ip内容),从而使得进程0能够被执行。

 

 

3.简要分析操作系统内核核心功能及运行工作机制

核心功能:进程管理、内存管理、I/O管理、文件管理、网络管理

工作机制:用四个进程循环完成并模拟进程切换