Codeforces Round #490 (Div. 3) E. Reachability from the Capital (tarjan缩点)

-
题意:有\(n\)个点,\(m\)条边,问你最少加多少条边,使得点\(s\)可以走到任何一个点.
-
题解:我们直接用tarjan缩点后,判断除了\(s\)以外强连通分量的入度为\(0\)的个数即可.
-
代码:
#include <bits/stdc++.h> #define ll long long #define fi first #define se second #define pb push_back #define me memset #define rep(a,b,c) for(int a=b;a<=c;++a) #define per(a,b,c) for(int a=b;a>=c;--a) const int N = 1e6 + 10; const int mod = 1e9 + 7; const int INF = 0x3f3f3f3f; using namespace std; typedef pair<int,int> PII; typedef pair<ll,ll> PLL; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int n,m,s; int dfn[N],low[N],timestamp; int stk[N],top; bool in_stk[N]; int id[N],scc_cnt,sz[N]; int din[N]; vector<int> edge[N]; void tarjan(int u){ dfn[u]=low[u]=++timestamp; stk[++top]=u,in_stk[u]=true; for(auto w:edge[u]){ if(!dfn[w]){ tarjan(w); low[u]=min(low[u],low[w]); } else if(in_stk[w]) low[u]=min(low[u],dfn[w]); } if(dfn[u]==low[u]){ ++scc_cnt; int y; do{ y=stk[top--]; in_stk[y]=false; id[y]=scc_cnt; sz[scc_cnt]++; }while(y!=u); } } int main(){ ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); cin>>n>>m>>s; rep(i,1,m){ int u,v; cin>>u>>v; edge[u].pb(v); } rep(i,1,n){ if(!dfn[i]) tarjan(i); } rep(i,1,n){ for(auto w:edge[i]){ int u=id[i]; int v=id[w]; if(u!=v){ din[v]++; } } } int ori=id[s]; int ans=0; rep(i,1,scc_cnt){ if(i==ori) continue; if(din[i]==0) ans++; } cout<<ans<<'\n'; return 0; }
𝓐𝓬𝓱𝓲𝓮𝓿𝓮𝓶𝓮𝓷𝓽 𝓹𝓻𝓸𝓿𝓲𝓭𝓮𝓼 𝓽𝓱𝓮 𝓸𝓷𝓵𝔂 𝓻𝓮𝓪𝓵
𝓹𝓵𝓮𝓪𝓼𝓾𝓻𝓮 𝓲𝓷 𝓵𝓲𝓯𝓮

浙公网安备 33010602011771号