12.25每日总结2
今天中午接着做大数据的实验
实验8
Flink初级编程实践
1.实验目的
(1)通过实验掌握基本的Flink编程方法。
(2)掌握用IntelliJ IDEA工具编写Flink程序的方法。
2.实验平台
(1)Ubuntu18.04(或Ubuntu16.04)。
(2)IntelliJ IDEA。
(3)Flink1.9.1。
3.实验步骤
(1)使用IntelliJ IDEA工具开发WordCount程序
在Linux系统中安装IntelliJ IDEA,然后使用IntelliJ IDEA工具开发WordCount程序,并打包成JAR文件,提交到Flink中运行。
WordCountData
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
public class WordCountData {
public static final String[] WORDS=new String[]{"My name is LCZ, I am a college student studying at Shijiazhuang Railway University."};
public WordCountData() {
}
public static DataSet<String> getDefaultTextLineDataset(ExecutionEnvironment env){
return env.fromElements(WORDS);
}
}
WordCountTokenizer
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class WordCountTokenizer implements FlatMapFunction<String, Tuple2<String,Integer>>{
public WordCountTokenizer(){}
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
String[] tokens = value.toLowerCase().split("\\W+");
int len = tokens.length;
for(int i = 0; i<len;i++){
String tmp = tokens[i];
if(tmp.length()>0){
out.collect(new Tuple2<String, Integer>(tmp,Integer.valueOf(1)));
}
}
}
}
WordCount
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.utils.ParameterTool;
public class WordCount {
public WordCount(){}
public static void main(String[] args) throws Exception {
ParameterTool params = ParameterTool.fromArgs(args);
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setGlobalJobParameters(params);
Object text;
if(params.has("input")){
text = env.readTextFile(params.get("input"));
}else{
text = WordCountData.getDefaultTextLineDataset(env);
}
AggregateOperator counts = ((DataSet)text).flatMap(new WordCountTokenizer()).groupBy(new int[]{0}).sum(1);
if(params.has("output")){
counts.writeAsCsv(params.get("output"),"\n", " ");
env.execute();
}else{
counts.print();
}
}
}

(2)数据流词频统计
使用Linux系统自带的NC程序模拟生成数据流,不断产生单词并发送出去。编写Flink程序对NC程序发来的单词进行实时处理,计算词频,并把词频统计结果输出。要求首先在IntelliJ IDEA中开发和调试程序,然后,再打成JAR包部署到Flink中运行。
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
public class TongJi {
public static void main(String[] args) throws Exception {
//定义socket的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
port = parameterTool.getInt("port");
} catch (Exception e) {
System.err.println("指定port参数,默认值为9000");
port = 9001;
}
//获取运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream("127.0.0.1", port, "\n");
//计算数据
DataStream<WordWithCount> windowCount = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
}
}
})//打平操作,把每行的单词转为<word,count>类型的数据
.keyBy("word")//针对相同的word数据进行分组
.timeWindow(Time.seconds(2), Time.seconds(1))//指定计算数据的窗口大小和滑动窗口大小
.sum("count");
//把数据打印到控制台
windowCount.print()
.setParallelism(1);//使用一个并行度
//注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
env.execute("streaming word count");
}
/**
* 主要为了存储单词以及单词出现的次数
*/
public static class WordWithCount {
public String word;
public long count;
public WordWithCount() {
}
public WordWithCount(String word, long count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
}
}
}
Pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>TongJi</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
</properties>
<dependencies>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.9.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.12</artifactId>
<version>1.9.2</version>
<!-- <scope>provided</scope>-->
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.12</artifactId>
<version>1.9.2</version>
</dependency>
</dependencies>
</project>

浙公网安备 33010602011771号