该文被密码保护。 阅读全文
posted @ 2025-06-10 19:56 KingPowers 阅读(4) 评论(0) 推荐(0)
该文被密码保护。 阅读全文
posted @ 2025-06-10 19:55 KingPowers 阅读(1) 评论(0) 推荐(0)
摘要: Day 1 \(100+75+20=195\)。 其实 T1 交了个假的东西上去,T2 交了 \(O(n^{1.75})\) 多过了一点分。 A 考虑两个 \(\log\) 咋做,直接树剖之后颜色段均摊,用线段树维护二元组的第二个值即可。所以你可以选择直接写 LCT 跑单 \(\log\) 颜色段均 阅读全文
posted @ 2025-06-05 20:53 KingPowers 阅读(9) 评论(0) 推荐(0)
摘要: 原神玩多了。 这轮的讲课好像大多数时候都在睡觉,所以暂时只打算写下模拟赛。 讲题的话等我闲下来可能会补。 Day 0 这是试机赛。 A 考虑对图边双缩点得到一棵树,则在树上任意两个边双加点会使得这两个点在树上路径之间的边双全部缩起来,那么我们要计算的其实就是加边使得正好覆盖树上所有边的方案数。 直接 阅读全文
posted @ 2025-05-13 15:30 KingPowers 阅读(37) 评论(0) 推荐(0)
摘要: 太美丽啦,沙东省集! 括号内是期望得分。 Day 1 \(20(30)+50+0=70(80)\),rk31。 打了依托史,不会人均 T1,没空写唐氏 T2,技不如人。 T1 交了个打表看出来的部分分有个地方还打错了,根本不是人。 A 限制比较强,先简单推一下,将以 \((x,y),(x+1,y), 阅读全文
posted @ 2025-04-11 18:26 KingPowers 阅读(54) 评论(0) 推荐(0)
该文被密码保护。 阅读全文
posted @ 2025-03-20 11:20 KingPowers 阅读(26) 评论(0) 推荐(0)
摘要: 我们先端上来一个美味的结论。 对于一张有 \(n\) 个点的竞赛图 \(G\),它的 SCC 数量等于: 将 \(G\) 的 \(n\) 个点划分为两个点集 \(S\) 和 \(T\),且要求 \(|T|>0\),对于任意的 \(u\in S\) 和 \(v\in T\),\(u\) 和 \(v\) 阅读全文
posted @ 2024-07-05 10:47 KingPowers 阅读(38) 评论(0) 推荐(0)
摘要: 如何优雅地数树。 阅读全文
posted @ 2024-03-13 14:40 KingPowers 阅读(184) 评论(0) 推荐(2)
摘要: 前言 先把 SA 给写出来,SAM 暂时还没学会,学会了应该也不会写,因为构造过程过于繁琐。 本文可能对 SA 的算法流程和代码实现上的介绍相对简略,主要介绍一些常见用途。 约定 无特殊说明字符串的下标从 \(1\) 开始。 无特殊说明 \(s\) 表示字符串,\(n\) 表示字符串长度。 “后缀 阅读全文
posted @ 2024-02-19 20:03 KingPowers 阅读(80) 评论(0) 推荐(1)