【源码】RingBuffer(二)——消费者

消费者如何读取数据?

前一篇是生产者的处理,这一篇讲消费者的处理

我们都知道,消费者无非就是不停地从队列中读取数据,处理数据。但是与BlockedQueue不同的是,RingBuffer的消费者不会对队列进行上锁,那它是怎样实现的呢?

概括地说,就是通过CAS原子性地得到一个可消费的序号,然后再根据序号取出数据进行处理。

在看代码之前,我们先把能想到的东西先罗列一下:

1.需要一个尾指针来追踪消费状态

2.如何防止一个数据被多个消费者重复消费?

3.消费速度不能超过生产者,如何限制?

4.当没有可处理数据的时候消费者该做什么,自旋还是挂起等待生产者唤醒?

5.如果4选择挂起,那么如果RingBuffer关闭,如何唤醒消费者以终结线程任务?

6.RingBuffer构造的时候需要传入线程工厂,RingBuffer是如何使用线程的,多个任务使用一个线程调度?

7.消费者何时启动?

好,问题有了,现在我们来看代码,下面是EventProcessor的一个实现,WorkProcessor的部分代码。

public final class WorkProcessor<T>
    implements EventProcessor
{
    private final AtomicBoolean running = new AtomicBoolean(false); //当前处理器状态
    private final Sequence sequence = new Sequence(Sequencer.INITIAL_CURSOR_VALUE); //当前已消费过的最新序号
    private final RingBuffer<T> ringBuffer; //保留此引用,方便取数据
    private final SequenceBarrier sequenceBarrier; //用于等待下一个最大可用序号,可与多个Processor共用
    private final WorkHandler<? super T> workHandler; //实际上的处理器
    private final ExceptionHandler<? super T> exceptionHandler;
    private final Sequence workSequence; //多个Processor共用的workSequence,可以得到下一个待处理的序号

    //....
    @Override
    public void run()
    {
        if (!running.compareAndSet(false, true))  //防止run方法重复调用造成的问题
        {
            throw new IllegalStateException("Thread is already running");
        }
        sequenceBarrier.clearAlert();

        notifyStart();

        boolean processedSequence = true;
        long cachedAvailableSequence = Long.MIN_VALUE;
        long nextSequence = sequence.get();
        T event = null;
        while (true)  //死循环
        {
            try
            {
                if (processedSequence)
                {
                    if (!running.get()) //如果检查到已关闭,则唤醒在同一个Barrier上的其他processor线程
                    {
                        sequenceBarrier.alert();  //唤醒其他线程
                        sequenceBarrier.checkAlert(); //抛出异常,终结此线程
                    }
                    processedSequence = false;
                    do
                    {
                        //workSequence可能和多个Processor共用
                        nextSequence = workSequence.get() + 1L;
                        //这个sequence才是当前处理器处理过的序号,生产者判断尾指针的时候就是按照这个来的,这个就是gatingSequence
                        //拿到下一个新序号的时候,说明workSequence前一个数据已经处理过了
                        sequence.set(nextSequence - 1L);
                    }
                    //由于workSequence可能由多个Processor共用,故存在竞争情况,需要使用CAS
                    while (!workSequence.compareAndSet(nextSequence - 1L, nextSequence));
                }

                //如果没有超过上一次缓存生产者的最大序号,则表明数据可取
                if (cachedAvailableSequence >= nextSequence)
                {
                    //取出序号对应位置的数据
                    event = ringBuffer.get(nextSequence);
                    //交给handler处理
                    workHandler.onEvent(event);
                    processedSequence = true;
                }
                else
                {
                    //阻塞等待下一个可用的序号
                    //如果就是nextSequence,就返回nextSequence
                    //如果可用的大于nextSequence,则返回最新可用的sequence
                    cachedAvailableSequence = sequenceBarrier.waitFor(nextSequence);
                }
            }
            catch (final TimeoutException e)
            {
                notifyTimeout(sequence.get());
            }
            catch (final AlertException ex) //checkAlert()抛出的
            {
                if (!running.get()) //如果已经结束,则终结循环,线程任务结束
                {
                    break;
                }
            }
            catch (final Throwable ex) //其他异常,则交给异常处理器处理
            {
                // handle, mark as processed, unless the exception handler threw an exception
                exceptionHandler.handleEventException(ex, nextSequence, event);
                processedSequence = true;
            }
        }

        notifyShutdown();

        running.set(false);
    }
    //...

    
}

 针对问题一:需要一个尾指针来追踪消费状态

你们注意到代码中有两个Sequence,workSequence和sequence。为啥需要两个呢?

workSequence消费者使用的最新序号(该序号的数据未被处理过,只是被消费者标记成可消费);而sequence序号的数据则是被消费过的,这个序号正是前一篇中的gatingSequence。

针对问题二:如何防止一个数据被多个消费者重复消费?

问题二的解决方案就是WorkPool,即让多个WorkProcessor共用一个workSequence,这样它们就会竞争序号,一个序号只能被消费一次。

public final class WorkerPool<T>
{
    private final AtomicBoolean started = new AtomicBoolean(false);
    private final Sequence workSequence = new Sequence(Sequencer.INITIAL_CURSOR_VALUE); //从-1开始
    private final RingBuffer<T> ringBuffer; //RingBuffer引用,用于构造Processor,取数据
    private final WorkProcessor<?>[] workProcessors;
    //...
    public WorkerPool(
        final RingBuffer<T> ringBuffer,
        final SequenceBarrier sequenceBarrier,
        final ExceptionHandler<? super T> exceptionHandler,
        final WorkHandler<? super T>... workHandlers)
    {
        this.ringBuffer = ringBuffer;
        final int numWorkers = workHandlers.length;
        workProcessors = new WorkProcessor[numWorkers];

        //每个handler构造一个Processor
        for (int i = 0; i < numWorkers; i++)
        {
            workProcessors[i] = new WorkProcessor<>(
                ringBuffer,
                sequenceBarrier, //共用同一个sequenceBarrier
                workHandlers[i],
                exceptionHandler,
                workSequence); //共用同一个workSequence
        }
    }

    //...
}

public class Disruptor<T>
{

    //...
    //为每个WorkHandler构造一个WorkProcessor,再包装成一个WorkerPool
    public final EventHandlerGroup<T> handleEventsWithWorkerPool(final WorkHandler<T>... workHandlers)
    {
        return createWorkerPool(new Sequence[0], workHandlers);
    }
    //....

}

针对问题三、四:消费速度不能超过生产者,如何限制?当没有可处理数据的时候消费者该做什么,自旋还是挂起等待生产者唤醒?

使用SequenceBarrier,从WorkProcessor的代码中我们可以知道,消费者会缓存上次获取的最大可消费序号,然后在这序号范围内都可以直接竞争。每次获取最小可用序号的时候,则会触发waitStrategy等待策略进行等待。

 final class ProcessingSequenceBarrier implements SequenceBarrier
{
    private final WaitStrategy waitStrategy; //等待策略
    private final Sequence dependentSequence; //依赖的序号,默认为RingBuffer的sequence
    private volatile boolean alerted = false; 
    private final Sequence cursorSequence; //RingBuffer的sequence
    private final Sequencer sequencer; 

    //...
    public long waitFor(final long sequence)
        throws AlertException, InterruptedException, TimeoutException
    {
        checkAlert(); //如果已shutdown,则抛出异常,终结任务

        //sequence为消费者想要的下一个序号
        //cursorSequence为RingBuffer的序号(生产者最新序号)
        //dependentSequence默认就是cursorSequence
        //特殊情况下,例如消费者B要求只能消费消费者A消费过的,则dependentSequence就会是消费者A的sequence
        long availableSequence = waitStrategy.waitFor(sequence, cursorSequence, dependentSequence, this);

        if (availableSequence < sequence)
        {
            return availableSequence;
        }

        //得到的序号是生产者用过的序号,但是该序号对应的数据可能未发布,如果访问未发布的数据,就会影响正确性,因为可能该数据还处于translate阶段
        return sequencer.getHighestPublishedSequence(sequence, availableSequence);
    }
    //...
}

 其中等待策略有很多中,常见的就是BlockingWaitStategy,该等待策略会挂起执行线程。当生产者publishEvent的时候,则会调用WaitStrategy#signalAllWhenBlocking()方法唤醒所有等待线程。

public final class BlockingWaitStrategy implements WaitStrategy
{
    private final Object mutex = new Object(); //使用对象内置的条件队列

    @Override
    public long waitFor(long sequence, Sequence cursorSequence, Sequence dependentSequence, SequenceBarrier barrier)
        throws AlertException, InterruptedException
    {
        long availableSequence;
        if (cursorSequence.get() < sequence) //当生产者序号小于消费者需要的序号时,挂起等待唤醒
        {
            synchronized (mutex)
            {
                while (cursorSequence.get() < sequence) //使用while是为了防止被错误唤醒,所以被唤醒后还会再判断条件是否满足
                {
                    barrier.checkAlert();
                    mutex.wait();
                }
            }
        }

        //生产者序号满足后,查看依赖项是否满足
        //如果依赖的消费者的序号小于需求序号,即依赖的消费者还没消费过需求序号
        //则自旋等待
        while ((availableSequence = dependentSequence.get()) < sequence)
        {
            barrier.checkAlert();
            ThreadHints.onSpinWait();
        }

        return availableSequence;
    }

    @Override
    public void signalAllWhenBlocking() //开设接口,用于唤醒条件队列内的等待线程
    {
        synchronized (mutex)
        {
            mutex.notifyAll();
        }
    }

    @Override
    public String toString()
    {
        return "BlockingWaitStrategy{" +
            "mutex=" + mutex +
            '}';
    }
}

针对问题六、七:RingBuffer构造的时候需要传入线程工厂,RingBuffer是如何使用线程的,多个任务使用一个线程调度?消费者何时启动?

消费者随Disruptor启动,Disruptor启动时会从ConsumerRepository中取出Consumer,提交给Executor执行。

public RingBuffer<T> start()
    {
        checkOnlyStartedOnce();
        for (final ConsumerInfo consumerInfo : consumerRepository)
        {
            consumerInfo.start(executor);
        }

        return ringBuffer;
    }

其中,在新版的Disruptor中,不建议使用外部传入的Executor,而是只传ThreadFactory,然后由内部构造一个Executor,就是BasicExecutor。它的实现就是每次提交的任务都创建一个新的线程负责。所以它的线程模型就是一个消费者一个线程。

public class Disruptor<T>
{
    //...
    public Disruptor(final EventFactory<T> eventFactory, final int ringBufferSize, final ThreadFactory threadFactory)
    {
        this(RingBuffer.createMultiProducer(eventFactory, ringBufferSize), new BasicExecutor(threadFactory));
    }
    //...
}

public class BasicExecutor implements Executor
{
    private final ThreadFactory factory;
    private final Queue<Thread> threads = new ConcurrentLinkedQueue<>();

    public BasicExecutor(ThreadFactory factory)
    {
        this.factory = factory;
    }

    @Override
    public void execute(Runnable command)
    {
        //每提交一个任务就新建一个新的线程处理这个任务
        final Thread thread = factory.newThread(command);
        if (null == thread)
        {
            throw new RuntimeException("Failed to create thread to run: " + command);
        }

        thread.start();

        threads.add(thread);
    }
    //...
}

 

posted @ 2020-05-12 22:34  猫毛·波拿巴  阅读(1076)  评论(0编辑  收藏  举报