小练习
据说洛谷有此题,但我没找到。若找到了,请@我,谢谢。
Decribe:
求:
\[\sum_{i=1}^{n}\sum_{j=1}^{m}i\times j \times \gcd(i,j)
\]
Solution:
令 \(k=\gcd(i,j)\)。
\[\sum_{k=1}^{\min(n,m)}k^3\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{k}\rfloor} j\sum_{d|\gcd(i,j)}\mu(d)
\]
\[\sum_{k=1}^{\min(n,m)}k^3\sum_{d=1}^{\min(\lfloor\frac{n}{k}\rfloor,\lfloor\frac{m}{k}\rfloor)}d^2\mu(d)\sum_{i=1}^{\lfloor\frac{n}{kd}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{kd}\rfloor}j
\]
令 \(kd=T\)。
\[\sum_{T=1}^{\min(n,m)}T^2\sum_{d|T}d\mu(\frac{T}{d})\sum_{i=1}^{\lfloor\frac{n}{T}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{T}\rfloor}j
\]
\[\sum_{T=1}^{\min(n,m)}T^2\phi(T)\sum_{i=1}^{\lfloor\frac{n}{T}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{T}\rfloor}j
\]
Code:
bool _Start;
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
namespace IO
{
#define TP template<typename T>
#define TP_ template<typename T,typename ... T_>
#ifdef DEBUG
#define gc() (getchar())
#else
char buf[1<<20],*p1,*p2;
#define gc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<20,stdin),p1==p2)?EOF:*p1++)
#endif
#ifdef DEBUG
void pc(const char &c)
{
putchar(c);
}
#else
char pbuf[1<<20],*pp=pbuf;
void pc(const char &c)
{
if(pp-pbuf==1<<20)
fwrite(pbuf,1,1<<20,stdout),pp=pbuf;
*pp++=c;
}
struct IO{~IO(){fwrite(pbuf,1,pp-pbuf,stdout);}}_;
#endif
TP void read(T &x)
{
x=0;static int f;f=0;static char ch;ch=gc();
for(;ch<'0'||ch>'9';ch=gc())ch=='-'&&(f=1);
for(;ch>='0'&&ch<='9';ch=gc())x=(x<<1)+(x<<3)+(ch^48);
f&&(x=-x);
}
TP void write(T x)
{
if(x<0)
pc('-'),x=-x;
static T sta[35],top;top=0;
do
sta[++top]=x%10,x/=10;
while(x);
while(top)
pc(sta[top--]^48);
}
TP_ void read(T &x,T_&...y){read(x);read(y...);}
TP void writeln(const T x){write(x);pc('\n');}
TP void writesp(const T x){write(x);pc(' ');}
TP_ void writeln(const T x,const T_ ...y){writesp(x);writeln(y...);}
TP inline T max(const T &a,const T &b){return a>b?a:b;}
TP_ inline T max(const T &a,const T_&...b){return max(a,max(b...));}
TP inline T min(const T &a,const T &b){return a<b?a:b;}
TP_ inline T min(const T &a,const T_&...b){return min(a,min(b...));}
TP inline void swap(T &a,T &b){static T t;t=a;a=b;b=t;}
TP inline T abs(const T &a){return a>0?a:-a;}
#undef TP
#undef TP_
}
using namespace IO;
using std::cerr;
using LL=long long;
constexpr int N=1e7+5;
constexpr LL P=20101009;
int prime[N],pr;
LL phi[N],s[N];
bool v[N];
void init(int n=N-1)
{
phi[1]=1;
for(int i=2;i<=n;i++)
{
if(!v[i])
prime[++pr]=i,phi[i]=i-1;
for(int j=1;j<=pr&&prime[j]*i<=n;j++)
{
int k=prime[j]*i;
v[k]=1;
if(!(i%prime[j]))
{
phi[k]=phi[i]*prime[j]%P;
break;
}
phi[k]=phi[i]*phi[prime[j]]%P;
}
}
for(int i=1;i<=n;i++)
{
phi[i]=(phi[i]*i%P*i%P+phi[i-1])%P;
s[i]=(i+s[i-1])%P;
}
}
LL calc(LL n)
{
return n*(n+1ll)%P*(2ll*n+1ll)%P*(16750841ll)%P;
}
bool _End;
int main()
{
// fprintf(stderr,"%.2 MBlf\n",(&_End-&_Start)/1048576.0);
LL n,m;
read(n,m);
if(n>m)
swap(n,m);
init(m);
LL ans=0;
for(LL l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=(ans+((phi[r]-phi[l-1])+P)%P*s[n/l]%P*s[m/l]%P)%P;
}
writeln(ans);
return 0;
}

浙公网安备 33010602011771号