会员
众包
新闻
博问
闪存
赞助商
HarmonyOS
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
freebirds
博客园
首页
新随笔
联系
管理
订阅
上一页
1
2
3
4
5
下一页
2019年3月28日
Dynamic Curriculum Learning for Imbalanced Data Classification
摘要: 复现Dynamic Curriculum Learning for Imbalanced Data Classification 这篇paper思路很清晰 主要的复现是两个loss函数
阅读全文
posted @ 2019-03-28 10:34 freebirds
阅读(865)
评论(1)
推荐(1)
2019年3月27日
classification-evaluation
摘要: 对于分类问题的评测 评价指标通常有5个,分别是ma,acc,pre,recall,f1 ma:一个既关注正样本,又关注负样本的评测指标 正样本recall + 负样本recall / 2, acc: 只关注正样本,但是属于pre和recall的结合体 acc=TP / PUT U:取并集,虽然我觉得
阅读全文
posted @ 2019-03-27 11:27 freebirds
阅读(310)
评论(0)
推荐(0)
2019年3月22日
论初始化的重要性
摘要: 初始化是相当重要的,一定不能乱写, 因为首先初始化由于学习率比较小的原因,导致这个层的weight改变的会很慢, 其次,初始化如果不对,很可能不只是下降慢,可能是全盘皆输 17:40:18 从上述公式可以看出,由于学习率很小,所以w基本不变,再加上w内部如果都设为1,则w更新之后也基本一样,如果是这
阅读全文
posted @ 2019-03-22 17:48 freebirds
阅读(691)
评论(0)
推荐(0)
Deep Imbalanced Attribute Classification usingVisual Attention Aggregation
摘要: 关于Deep Imbalanced Attribute Classification usingVisual Attention Aggregation 文章的复现 这篇文章的创新点: 1 一个新的混合attention,这个结构应该很不错,即采用普通正面attention与channel atte
阅读全文
posted @ 2019-03-22 13:15 freebirds
阅读(980)
评论(1)
推荐(1)
2019年3月21日
对于batchnorm层的理解
摘要: batchnorm层的作用是什么? batchnorm层的作用主要就是把结果归一化, 首先如果没有batchnorm ,那么出现的场景会是: 过程模拟 首先batch-size=32,所以这个时候会有32个图片进入resnet. 其次image1进入resnet50里面第2个卷积层,然后得出一个结果
阅读全文
posted @ 2019-03-21 10:38 freebirds
阅读(8630)
评论(0)
推荐(0)
2019年3月20日
对于卷积层得新的理解
摘要: 卷积层得参数: in * kernelw * kernel *c: 可以理解为全连接,我们可以把一个饼状图当做一个节点, 如果把一个饼,也就是一个kernel*kernel(例:2*2)当做一个节点,那么这个参数层也就是 in * 1 * out 那么这个所谓的in * 1 *out 不就是全连接里
阅读全文
posted @ 2019-03-20 23:42 freebirds
阅读(393)
评论(0)
推荐(0)
2019年3月19日
如何防止过拟合
摘要: 防止过拟合 可以通过 1 增加augmentation(flip imgaug) 2 增加pooling(因为没有参数) 3 增加l2正则化 lr正则化,就是l2范数,所以增加了l2范数loss会变成这样 loss = L + lmda/2 * ||w|| l2范数就是1**2+2**2+3**2+
阅读全文
posted @ 2019-03-19 19:41 freebirds
阅读(1258)
评论(0)
推荐(0)
reID-evalution
摘要: 评测reID的指标,也就是以图搜图的能力,也就是在数据库检索的能力,主要就是用两个指标 一个是map 另一个是cmc,也就是rank1,rank5,rank10.... 但是一般我们看的主要就是 map和rank1 对于用户来说,想看的指标优先程度: rank1 > map > rank5 理由如下
阅读全文
posted @ 2019-03-19 18:54 freebirds
阅读(737)
评论(0)
推荐(0)
attention 门 cat add caption field
摘要: attention就是一个门,sigmoid是if elif 几很多门,能进去的也有很多门,而softmax类似于switch for,即很多门里面只能进入一个门 决定通路与闭路,一张图片10*10,可能关注的点就是中间的一部分和左下角的一部分,那么中间的一部分就是通路,sigmoid输出尽量为1,
阅读全文
posted @ 2019-03-19 15:09 freebirds
阅读(238)
评论(0)
推荐(0)
2019年3月13日
计算公式以及参数数量计算
摘要: Conv的计算公式 1 conv: (x-k+2*p)/s + 1 = 新的conv 的长度与宽度 2 maxpooling/avgpooling: (x-k)/s + 1 =新的pool长度与宽度大小 参数计算量: 1 包括卷积层参数量(weights+bias):主要,但是参数量本身却很小 2
阅读全文
posted @ 2019-03-13 21:52 freebirds
阅读(1358)
评论(0)
推荐(0)
上一页
1
2
3
4
5
下一页
公告