朴素贝叶斯应用:垃圾邮件分类
1. 数据准备:收集数据与读取
2. 数据预处理:处理数据
3. 训练集与测试集:将先验数据按一定比例进行拆分。
4. 提取数据特征,将文本解析为词向量 。
5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 。
6. 测试模型:用测试数据集评估模型预测的正确率。
混淆矩阵
准确率、精确率、召回率、F值
7. 预测一封新邮件的类别。
8. 考虑如何进行中文的文本分类(期末作业之一)。
要点:
理解朴素贝叶斯算法
理解机器学习算法建模过程
理解文本常用处理流程
理解模型评估方法
import csv
from sklearn.model_selection import train_test_split
import nltk
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from sklearn.naive_bayes import MultinomialNB
def preprocessing(text):
# text = text.decode("utf-8")
tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]
stops = stopwords.words('english')
tokens = [token for token in tokens if token not in stops]
tokens = [token.lower() for token in tokens if len(token) >= 3]
lmtzr = WordNetLemmatizer()
tokens = [lmtzr.lemmatize(token) for token in tokens]
preprocessed_text = ' '.join(tokens)
return preprocessed_text
def read_data():
'''读取文件并进行预处理'''
sms=open(r'H:\数据挖掘算法\12.3\sms.txt','r',encoding='utf-8')
sms_data = []
sms_label = []
csv_reader=csv.reader(sms,delimiter='\t')
nltk.download('punkt')
nltk.download('wordnet')
for line in csv_reader:
print(line)
sms_label.append(line[0])
sms_data.append(preprocessing(line[1]))
sms.close()
x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
print(len(sms_data),len(x_train),len(x_test))
print(x_train)
return sms_data,sms_label,x_train,x_test,y_train,y_test
def xiangliang(x_train,x_test):
# 向量化
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='english',
strip_accents='unicode') # ,norm='12'
x_train = vectorizer.fit_transform(x_train)
x_test = vectorizer.transform(x_test)
return x_train,x_test,vectorizer
def beiNB(x_train, y_train,x_test):
# 朴素贝叶斯分类器
clf = MultinomialNB().fit(x_train, y_train)
y_nb_pred = clf.predict(x_test)
return y_nb_pred,clf
def result(vectorizer,clf):
# 分类结果
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
print(y_nb_pred.shape, y_nb_pred)
print('nb_confusion_matrix:')
cm = confusion_matrix(y_test, y_nb_pred)
print(cm)
cr = classification_report(y_test, y_nb_pred)
print(cr)
feature_names = vectorizer.get_feature_names()
coefs = clf.coef_
intercept = clf.intercept_
coefs_with_fns = sorted(zip(coefs[0], feature_names))
n = 10
top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1])
for (coef_1, fn_1), (coef_2, fn_2) in top:
print('\t%.4f\t%-15s\t\t%.4f\t%-15s' % (coef_1, fn_1, coef_2, fn_2))
if __name__ == '__main__':
sms_data,sms_lable,x_train,x_test,y_train,y_test = read_data()
X_train,X_test,vectorizer = xiangliang(x_train,x_test)
y_nb_pred,clf = beiNB(X_train, y_train,X_test)
result(vectorizer,clf)



浙公网安备 33010602011771号