基于mykernel 2.0编写一个操作系统内核
1. 搭建虚拟的x86-64 CPU实验平台mykernel 2.0
1.1 实验环境
Ubuntu 18.04 LTS
1.2 依次执行下列命令,配置环境
mykernel-2.0_for_linux-5.4.34.patch在本地下载完成后上传到ubuntu上。
sudo apt install axel axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz xz -d linux-5.4.34.tar.xz tar -xvf linux-5.4.34.tar cd linux-5.4.34 patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev make defconfig #切换到linux-5.4.34目录下执行 make -j$(nproc) sudo apt install qemu
qemu-system-x86_64 -kernel arch/x86/boot/bzImage
执行make defconfig前要切换到linux-5.4.34目录下
执行make -j$(nproc)时花费的时间比较长,执行完的结果如下图所示。

可以看到kernel:arch/x86/boot/bzImage is ready
执行qemu-system-x86_64 -kernel arch/x86/boot/bzImage结果如下图所示。

上图输出部分内容是mymain.c和myinterrupt.c的结果,分别查看两份代码
#mymain.c的代码 void __init my_start_kernel(void) { int i=0; while(1) { i++; if(i%100000==0) pr_notice("my_start_kernel here %d \n",i); } }
#myinterrupt的代码 void my_timer_handler(void) { pr_notice("\n>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<\n\n"); }
mymain.c文件中,通过计数每隔计100000数之后循环输出my_start_kernel here;myinterrupt.c文件中一直输出>>>>>>>>>>>>>>my_timer_handler here<<<<<<<<<<<。通过上述流程,相信对linux内核的编译有了一定的熟悉,下面开始基于mykernel2.0编写一个操作系统内核。
2.基于mykernel2.0编写一个操作系统内核
本部分参照https://github.com/mengning/kernel
2.1 修改相关文件
mymain.c文件是内核运行的程序,当前mymain.c的代码一直在执行,同时还有一个中断处理程序的上下文环境,周期性的产生时段中断信号,可以触发myinterrupt.c。
修改mymain.c、myinterrupt.c,添加mypcb.h头文件,过程及代码参考https://github.com/mengning/kernel里的范例。
其中mymain.c在原来的基础上增加了进程管理的代码,mypcb.h文件里定义了PCB的结构,myinterrupt.c文件中定义了进程如何切换,下面看一下mymain.c、myinterrupt.c、mypcb.h三个文件里的代码。
/* * linux/mykernel/mymain.c * * Kernel internal my_start_kernel * Change IA32 to x86-64 arch, 2020/4/26 * * Copyright (C) 2013, 2020 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM]; tPCB * my_current_task = NULL; volatile int my_need_sched = 0; void my_process(void); void __init my_start_kernel(void) { int pid = 0; int i; /* Initialize process 0*/ task[pid].pid = pid; task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; task[pid].next = &task[pid]; /*fork more process */ for(i=1;i<MAX_TASK_NUM;i++) { memcpy(&task[i],&task[0],sizeof(tPCB)); task[i].pid = i; task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]); task[i].next = task[i-1].next; task[i-1].next = &task[i]; } /* start process 0 by task[0] */ pid = 0; my_current_task = &task[pid]; asm volatile( "movq %1,%%rsp\n\t" /* set task[pid].thread.sp to rsp */ "pushq %1\n\t" /* push rbp */ "pushq %0\n\t" /* push task[pid].thread.ip */ "ret\n\t" /* pop task[pid].thread.ip to rip */ : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ ); } int i = 0; void my_process(void) { while(1) { i++; if(i%10000000 == 0) { printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); if(my_need_sched == 1) { my_need_sched = 0; my_schedule(); } printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); } } }
/* * linux/mykernel/myinterrupt.c * * Kernel internal my_timer_handler * Change IA32 to x86-64 arch, 2020/4/26 * * Copyright (C) 2013, 2020 Mengning * */ #include <linux/types.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/tty.h> #include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM]; extern tPCB * my_current_task; extern volatile int my_need_sched; volatile int time_count = 0; /* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */ void my_timer_handler(void) { if(time_count%1000 == 0 && my_need_sched != 1) { printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); my_need_sched = 1; } time_count ++ ; return; } void my_schedule(void) { tPCB * next; tPCB * prev; if(my_current_task == NULL || my_current_task->next == NULL) { return; } printk(KERN_NOTICE ">>>my_schedule<<<\n"); /* schedule */ next = my_current_task->next; prev = my_current_task; if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ { my_current_task = next; printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); /* switch to next process */ asm volatile( "pushq %%rbp\n\t" /* save rbp of prev */ "movq %%rsp,%0\n\t" /* save rsp of prev */ "movq %2,%%rsp\n\t" /* restore rsp of next */ "movq $1f,%1\n\t" /* save rip of prev */ "pushq %3\n\t" "ret\n\t" /* restore rip of next */ "1:\t" /* next process start here */ "popq %%rbp\n\t" : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) ); } return; }
/* * linux/mykernel/mypcb.h * * 定义了PCB的结构 */ #define MAX_TASK_NUM 4 #define KERNEL_STACK_SIZE 1024*2 /* CPU-specific state of this task */ struct Thread { unsigned long ip; unsigned long sp; }; typedef struct PCB{ int pid; volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ unsigned long stack[KERNEL_STACK_SIZE]; /* CPU-specific state of this task */ struct Thread thread; unsigned long task_entry; struct PCB *next; }tPCB; void my_schedule(void);
mymain.c文件中定义了全局变量my_need_sched,myinterrupt.c文件中定义了全局变量time_count,两个变量都是volatile变量,保证了编译器不会对代码进行优化,每次直接读取值。myinterrupt.c文件中定义了一个时间片大小为1000,如果时间片轮转完成并且my_need_sched不等于1,则将my_need_sched设为1,触发mymain.c文件中my_process函数工作,又将my_need_sched设为0,触发myinterrupt.c文件中的my_schedule函数,完成进程切换,循环往复。
重新编译后再次运行,结果如下图所示。

可以清楚看到进程的切换。
3.简要分析操作系统内核核心功能及运行工作机制
核心功能是my_schedule函数的实现,即进程的切换。
asm volatile( "pushq %%rbp\n\t" /* 1 save rbp of prev */ "movq %%rsp,%0\n\t" /* 2 save rsp of prev */ "movq %2,%%rsp\n\t" /* 3 restore rsp of next */ "movq $1f,%1\n\t" /* 4 save rip of prev */ "pushq %3\n\t" /* 5 */ "ret\n\t" /* 6 restore rip of next */ "1:\t" /* 7 next process start here */ "popq %%rbp\n\t" /* 8 */ : "=m" (prev->thread.sp),"=m" (prev->thread.ip) : "m" (next->thread.sp),"m" (next->thread.ip) );
步骤1把当前RBP寄存器的值推入到栈中
步骤2将前一个进程的sp保存到RSP寄存器中,即保存前一个进程的栈顶地址
步骤3将RSP指向下一个进程的sp
步骤4将当前进程的ip放到RIP中
步骤5将下个进程的ip推入栈中
步骤6将下个进程的ip放到RIP中
步骤7下个进程开始执行的位置
步骤8将next进程堆栈基地址从堆栈中恢复到RBP寄存器中
运行工作机制:myinterrupt.c文件中定义了一个时间片大小为1000,如果时间片轮转完成并且my_need_sched不等于1,则将my_need_sched设为1,触发mymain.c文件中my_process函数工作,又将my_need_sched设为0,触发myinterrupt.c文件中的my_schedule函数,完成进程切换,循环往复。
浙公网安备 33010602011771号