柯西不等式做差证明
\[(\sum_{i=1}^{n}a_i^2)(\sum_{i=1}^nb_j^2)≥(\sum_{i=1}^na_ib_i)^2
\]
\[\sum_{i=1}^n\sum_{j=1}^na_ib_j-\sum_{i=1}^n\sum_{j=1}^n(a_ib_ia_jb_j)
\]
\[=\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^na_i^2b_j^2+a_j^2b_i^2-\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n2a_ib_ia_jb_j
\]
\[\frac{1}{2}\sum_{i=1}^n\sum_{j=1}^n(a_ib_j-a_jb_i)^2>0
\]
柯西不等式证明

浙公网安备 33010602011771号