深入解析:18、论文阅读:AOD-Net:一体化除雾网络
前言
该论文提出了一种基于卷积神经网络(CNN)的图像去雾模型,称为 All-in-One 去雾网络(AOD-Net)。该模型基于重构的大气散射模型进行设计,不像以往的模型那样分别估计透射矩阵和大气光,而是通过轻量级的 CNN 直接生成干净图像。这种新颖的端到端设计使 AOD-Net易于嵌入到其他深度模型中,例如 Faster R-CNN,从而提升雾霾图像上的高层次任务性能。实验结果表明,在合成和真实雾霾图像资料集上,AOD-Net 在 PSNR、SSIM 和主观视觉质量方面均优于现有的最先进途径。此外,将 AOD-Net 与 Faster R-CNN 结合后,大家在雾霾图像上的目标检测性能显著提升。
介绍


雾霾的存在会显著降低恶劣天气下拍摄的户外图像的清晰度,影响到目标检测和识别等高层次的计算机视觉任务。因此,单图像去雾成为一种非常实用的技术。尽管从单张图像中估计多个物理参数具有挑战性,许多近期的研究已在这一目标上取得显著进展。除了估计全局的大气光强度,去雾的关键在于恢复传输矩阵,为此采用了多种统计假设和困难模型。然而,这些估计往往并不准确,一些常用的预处理办法(如引导滤波和软抠图)可能会扭曲雾霾图像生成过程,导致恢复性能不佳。此外,传输矩阵和大气光这两个关键参数的非联合估计,可能在应用时放大误差。
本文提出了一种高效的端到端去雾卷积神经网络(CNN)模型,称为
浙公网安备 33010602011771号