【AI 大模型】LangChain 框架 ① ( LangChain 简介 | LangChain 模块 | LangChain 文档 ) - 教程


在这里插入图片描述





一、LangChain 简介




1、LangChain 概念


LangChain是一款专为 构建基于 大语言模型 ( LLM ) 的 应用程序而 设计的 开源框架 ;

LangChain 可以理解为" 大模型应用 开发工具箱 ", 把 和 大模型交互、处理数据、连接外部程序 的各种能力封装成 模块化的组件, 大模型 应用开发者 不用从零开始写所有代码 , 借助 LangChain 开发框架 就能 快速搭建 复杂的 AI 应用 ;


LangChain 提供了预构建 的 代理架构 和 模型集成, 可以快速启动 , 并无缝地 将 LLM 融入 智能体 或 大模型应用程序 , 借助 LangChain 可以使用不到 10 行代码 , 就可以连接并利用 OpenAI、Anthropic、Google 等 大语言模型 ;


下图是LangChain 开发 Agent 智能体的 架构图 ,

每次 提问 , 都要将 历史对话数据 + 本地 RAG 知识库 的信息 输出到 提示词模板中 , 然后再将 拼接好的 提示词 输入到 LLM 大语言模型中 , 得到最终的 结果 ,

LangChain 就是将上述内容 封装起来, 开发者只需要 提前配置好 大模型 和 RAG 知识库 , 即可启用很少的代码 , 实现上述功能 ;
在这里插入图片描述


2、LangChain 定位


LangChain 框架 的 核心价值 在于打破单个 LLM 的能力边界 , 原生 LLM ( 大语言模型 ) 只能完成 简单的问答、生成任务, 而 LangChain 通过" 模块化 " 和 " 可组合性 ", 让开发者能够轻松整合 LLM 与 外部信息、工具、知识库 , 构建出 具备复杂逻辑、上下文感知、多步推理能力的 AI 应用 ,
如 : 智能客服、代码生成助手、知识库问答系统、自主智能体等 ;

如果把 大语言模型 ( LLM , Large Language Model )比作汽车的 发动机 , 那么 LangChain 就是完整的 汽车底盘 + 传动系统 + 控制系统 ,LangChain 让 " 发动机 " 能适配不同的 " 车身 " ( 应用场景 ) , 实现更困难的 " 行驶功能 " ( 业务逻辑 ) ;


3、LangChain 开发语言与应用场景


LangChain 支持Python 和 JavaScript / TypeScript 双语言开发, 生态丰富 ,兼容主流 大语言模型 LLM ( OpenAI、Anthropic、Google Gemini、开源的 Llama/GLM 等 ), 是当前 LLM 应用开发的主流框架之一 ;


LangChain 有如下应用场景 :

  • 知识库问答 ( RAG ) :企业内部文档问答、产品手册问答、法律条文检索 , 核心是" Indexes + RetrievalQAChain " ;
  • 智能对话机器人 :多轮上下文对话、个性化推荐 , 核心是" Memory + ConversationChain " ;
  • 自主智能体 ( AI Agent ) :自动写代码、数据分析、科研辅助 ( 如调用 PubMed API 检索论文 + 总结 ) , 核心是" Agents + Tools " ;
  • 文本生成与摘要 :长文档总结、多文档对比总结、个性化文案生成 , 核心是" LLMChain + Prompt Templates " ;
  • 代码辅助工具 :代码解释、bug 修复、自动化测试 , 核心是" Agents + PythonREPL Tool " ;

4、LangChain 核心组件


LangChain 核心组件 :LangChain 框架 有 五大核心组件 分别是LangChain ( 基础框架 ) 、LangGraph ( 多智能体编排 ) 、Deep Agents ( 智能体外骨骼 ) 、LangSmith ( 监控平台 ) ;

  • LangChain ( 基础框架 ) :智能体框架 的 " 操作系统内核 " ,提供 统一模型接口 与 模块化编写基础 ;
    • 模型抽象 :统一接口 使用适配集成包连接 OpenAI、Anthropic 等 100 + 模型供应商 , 屏蔽差异 ;
    • 提示词工程 :模板化管理与优化, 提升输出质量 ;
    • 程序集成 :支持 API、数据库、向量存储 等 数百种 外部服务
    • 记忆管理 : 提供多种 记忆策略, 解决 LLM 无状态性
    • 文档地址 :https://docs.langchain.com/oss/python/langchain/overview
  • LangGraph ( 多智能体编排 ) :运行时 编排引擎, 实现复杂状态管理与任务流控制 ;
    • 图结构建模 :有向图 表示 智能体环境, 帮助条件分支、循环和状态持久化
    • 多智能体协作 :多个 Agent 智能体 协同完成复杂任务, 如 : 研究 -> 分析 -> 报告流程 ;
    • 可视化调试 :直观呈现 执行路径, 便于 问题定位 ;
    • 文档地址 :https://docs.langchain.com/oss/python/langgraph/overview
  • Deep Agents ( 智能体外骨骼 ) : 该组件专注 长周期艰难任务处理 ;
  • LangServe ( 部署服务 ) :智能体 转化为 生产级 REST/gRPC API 的 部署平台 , 支持 流式输出、批处理 和 异步调用 , 兼容 FastAPI 生态便于扩展 ,一键部署 ,自动生成文档 ( Swagger/OpenAPI ) ;
  • LangSmith ( 监控平台 ) : 统一的 可观测性质量评估中心 ;

5、LangChain 学习路径


LangChain 学习路径 :

  • 入门阶段 : 先掌握 Models、Prompts、LLMChain三个核心模块 , 实现简单的文本生成、问答 ;
  • 进阶阶段 : 学习 Indexes、Memory、RetrievalQAChain, 搭建基础的RAG 知识库问答系统 ;
  • 高阶阶段 : 学习 Agents、Tools, 构建具备自主决策能力的 AI Agent ;
  • 工程化阶段 : 结合LangSmith 调试、LangServe 部署 ,实现生产级应用 ;




二、LangChain 模块



LangChain 框架 的架构遵循 " 模块化设计 ", 每个模块解决特定场景的问题 , 且 模块间可灵活组合 ;

LangChain 框架 的 核心价值是模块化组合 " LLM 大语言模型外部资源" , 克服原生 LLM 大语言模型" 无记忆、无工具、无外部信息 "的问题 ;

在下面 介绍 的 核心模块中 ,基础 ,就是Models Chains 是核心组合方式 ,Agents 是高阶能力 ,Indexes 是 RAG 的关键 ;


1、模型输入 / 输出 ( Models )


模型输入 / 输出 ( Models ) :是 LangChain 的核心层 ,负责与各类 LLM / 嵌入模型 ( Embedding Model ) 交互, 不包括如下 子模块 :

  • LLMs :对接 大语言模型 的 基础接口 , 统一不同厂商 ( OpenAI、Anthropic、百度文心等 ) 的 API 调用方式; 例如 , 用 ChatOpenAI 调用 GPT-4 , 用 ChatAnthropic 调用 Claude , 开发者 无需修改核心逻辑 ,只需要修改配置即可切换模型 ;
  • Chat Models :针对 对话式 LLM ( 如 GPT-3.5/4 Turbo、Claude Chat ) 的专用接口 , 支持 结构化的对话消息( 用户消息、助手消息、系统消息 ) ;
  • Embeddings :对接 文本嵌入模型 ( 如 OpenAI Embedding、BERT、智谱 AI 嵌入模型 ), 将 文本 转换为 向量表示 , 是知识库问答、文本检索的基础 ;
  • 参考文档 :https://docs.langchain.com/oss/python/langchain/models

下面是最 LangChain 最基本的 封装 OpenAI 大模型的代码示例 :

from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_core.messages import HumanMessage, SystemMessage
# 1. 初始化对话模型
chat_model = ChatOpenAI(
model="gpt-3.5-turbo",
api_key="你的OpenAI API密钥",
temperature=0.7  # 生成随机性 , 0-1之间
)
# 2. 构造对话消息并调用模型
messages = [
SystemMessage(content="你是一个专业的Python编程助手 , 回答简洁易懂 ; "),
HumanMessage(content="请解释什么是装饰器?")
]
response = chat_model.invoke(messages)
print(response.content)
# 3. 初始化嵌入模型并生成文本向量
embeddings = OpenAIEmbeddings(api_key="你的OpenAI API密钥")
text = "LangChain是LLM应用开发框架"
vector = embeddings.embed_query(text)
print(f"向量长度 : {len(vector)}")  # OpenAI Embedding输出1536维向量

2、提示词模板 ( Prompts )


提示词模板 ( Prompts ) :提示词是 LLM 应用的核心 , 但 手写 提示词 易出错、难复用; LangChain 的 Prompts 模块提供 如下 功能 :

提示工程 Prompt engineering 参考文档 :https://docs.langchain.com/langsmith/prompt-engineering


3、索引 ( Indexes )


索引 ( Indexes ) :当 LLM 需要处理 外部文档 ( 如 PDF、Word、知识库 )时 , Indexes 模块 负责将文档转换为 " 可检索 " 的格式, 核心流程是 :

  • 加载文档 ( Load ) : 通过 DocumentLoaders加载 PDF、TXT、网页、Excel 等格式的文件 ;
  • 分割文本 ( Split ) :将 长文档 分割为 短文本块( 避免超出 LLM 上下文窗口 ) ;
  • 嵌入文本 ( Embed ) :将 文本块 转换为 向量 ;
  • 存储向量 ( Store ) :将 文本向量 存入 向量数据库( 如 Chroma、Pinecone、Milvus ) ;
  • 检索文本 ( Retrieve ) :根据 用户问题 检索相关 文本块 ;

4、链 ( Chains )


LangChain 的 " 灵魂 “就是Chains , 该模块 允许将多个 组件 ( LLM、Prompt、检索器等 ) 组合成一个 可执行的流程 , 解决 ” 单步处理无法搞定困难任务 " 的问题 ;

常见的 Chain 类型 :

  • LLMChain :最基础的链 , 将Prompt Template + LLM组合 , 实现" 输入参数 -> 生成提示词 -> 调用 LLM -> 输出结果 " ;
  • RetrievalQAChain :检索增强生成 ( RAG ) 的 核心链 ,组合 " 检索器 + LLM " , 实现 " 用户提问 -> 检索相关文档 -> 将文档和困难传入 LLM -> 生成基于文档的回答 " ;
  • SequentialChain :串行链 , 将 多个 Chain 按顺序执行, 前一个 Chain 的输出作为后一个的输入 ;

5、记忆 ( Memory )


记忆 ( Memory ) :原生 LLM 没有 " 记忆 " ,无法记住 多轮对话 的 上下文; Memory 模块解决这个问题 , 核心 模块 类型如下 :

  • ConversationBufferMemory :简单 缓存 所有对话历史 ;
  • ConversationSummaryMemory :对 对话历史 进行总结, 避免上下文过长 ;
  • ConversationTokenBufferMemory :按 Token 数 限制 缓存对话历史, 适配 LLM 的上下文窗口 ;

参考文档 :https://docs.langchain.com/oss/python/concepts/memory


6、代理 ( Agents )


代理 ( Agents ) : LangChain 的高阶能力 ,就是Agents 让 LLM 大语言模型 能 " 自主决策 ", 根据用户问题 , 选择调用哪些工具 ( 如 : 计算器、搜索引擎、代码解释器 ) , 完成多步推理任务 ;

  • Agent :决策核心 , 负责判断 " 该调用哪个工具 "" 是否需要继续调用应用 " ;
  • Tool :应用接口 ,LangChain 内置多种程序 ( Calculator、SerpAPI ( 搜索引擎 ) 、PythonREPL ( 代码执行 ) ), 也拥护自定义工具 ;
  • Executor :执行器 , 负责执行 Agent 的决策 ,调用 应用并返回结果 ;

参考文档 :https://docs.langchain.com/oss/python/langchain/agents


7、 工具 ( Tools )


工具 ( Tools ) :该模块是 Agents 的基础 ,提供 与 外部系统 交互 的接口; LangChain 内置器具包括 :

  • 计算类 :Calculator、PythonREPL ;
  • 检索类 :SerpAPI ( 谷歌搜索 ) 、DuckDuckGoSearch ;
  • 文件类 :FileBrowser、CSVLoader ;
  • API 类 :RequestsTool ( 调用 HTTP 接口 ) ;

开发者也可利用Tool类自定义工具 , 只需实现func ( 工具逻辑 )description ( 设备描述 , 供 Agent 判断是否调用 ) ;

参考文档 :https://docs.langchain.com/oss/python/langchain/agents


8、 文档加载器 ( Document Loaders )


负责 加载外部文档 ,支持几乎所有主流格式 :

  • 文本类 :TXT、Markdown、JSON ;
  • 办公类 :PDF、Word、Excel、PPT ;
  • 网页类 :URL、HTML、Sitemap ;
  • 数据库类 :MySQL、PostgreSQL、MongoDB ;
  • 其他 :Notion、Confluence、GitHub ;

文档加载 参考文档 :https://docs.langchain.com/oss/python/langchain/knowledge-base#1-documents-and-document-loaders

适配 第三方 文档加载 模型 集成包 参考文档 :https://docs.langchain.com/oss/javascript/integrations/providers/all_providers#file-loaders


9、评估 ( Evaluation )


LLM 应用的效果难以量化 , Evaluation 模块提供评估工具 , 支持 :

  • 手动评估 :人工打分 ;
  • 自动评估 :用 LLM 自身评估回答质量 ;
  • 基准测试 :对比不同模型 / 链的效果 ;

langsmith 评估 参考文档 :https://docs.langchain.com/langsmith/evaluation-quickstart#evaluation-quickstart

langsmith 部署 参考文档 :https://docs.langchain.com/langsmith/deployments





三、LangChain 文档




1、LangChain 功能模块文档


LangChain 功能模块文档 :https://docs.langchain.com/oss/python/langchain/overview, 该文档是LangChain 框架Python 语言的 总览文档 ,通过左侧章节标题能够跳转到

等文档 ;
在这里插入图片描述


2、LangChain API 参考文档


LangChain API 参考文档 : LangChain 构建具体对应的的 Python / JavaScript / TypeScript 语言对应的 API 文档 , 主要介绍就是这LangChain 和 LangGraph 构建 大模型应用程序用到的 核心接口 ,每个部分涵盖 LangChain 生态系统中的不同方面 ,使用 顶部 或 左侧 的 导航栏 查看 LangChain 特定模块 的文档 ;

下面是 LangChain 框架的 Agents 开发文档 :https://reference.langchain.com/python/langchain/agents/

在这里插入图片描述


3、LangChain 适配第三方模型集成包


LangChain 框架提供了 丰富的适配第三方模型的集成包 , 涉及到 大语言模型 ( LLMs ) 、聊天模型、检索器、向量数据库、文档加载器等多个类型的 AI 模型 ;

集成包 指的是 LangChain Python 生态中专门对接不同 AI 模型服务商的 程序模块, 其核心作用是让 开发者不用自己写复杂的 API 调用、参数适配代码, 只需几行简单代码就能在 LangChain 框架 中调用 对应服务商 的 大语言模型 ( LLMs ) 、聊天模型 ( Chat Models )等能力 ;


LangChain 框架 集成包 文档 :https://docs.langchain.com/oss/python/integrations/providers/overview
在这里插入图片描述

下面给出一个 集成包示例 ,langchain-openai 集成包是 LangChain 官方提供的、专门对接适配 OpenAI 生态 ( 包括 OpenAI 官方、Azure OpenAI ) 的 集成包 ;

  • 快捷调用 OpenAI 的 GPT-3.5/4/4o 等聊天模型、Embedding 嵌入模型 ;
  • 封装了 OpenAI API 的参数( 如温度、最大令牌数、上下文窗口 ) , 适配 LangChain 的统一接口 ;
  • 支持 流式输出、函数调用 ( Function Calling ) 等 OpenAI 核心特性, 无需手动处理 API 交互细节 ;

langchain-openai 集成包 文档地址 :https://reference.langchain.com/python/integrations/langchain_openai/

在这里插入图片描述

langchain-google-vertexai 集成包是 LangChain 官方适配对接 Google Cloud Vertex AI 平台的集成包( Vertex AI 是 Google 云的一站式 AI 开发平台 ) ;文档地址 :https://reference.langchain.com/python/integrations/langchain_google_vertexai/

langchain-ollama 集成包是 LangChain 官方适配对接 Ollama 工具的集成包 ( Ollama 是一款轻量级本地大模型运行工具 , 可一键部署 Llama 3、Phi 3、Mistral 等开源模型 ) , 文档地址 :https://reference.langchain.com/python/integrations/langchain_ollama/


4、LangChain 教程指南


LangChain 教程指南文档 :https://docs.langchain.com/oss/python/learn, 在该文档中提供了 一系列教程、概念概述及补充资源 , 借助 LangChain 和 LangGraph 构建 功能强大 的 大模型应用程序 ;

在这里插入图片描述

posted on 2026-01-01 00:53  ljbguanli  阅读(0)  评论(0)    收藏  举报