第二次作业:卷积神经网络 part 2
第二次作业:卷积神经网络 part 2
生成式对抗网络简介
-
生成式对抗网络的应用
图像着色、图像超像素、背景模糊、人脸生成、人脸定制、卡通图像生成、文本生成图片、字体变换、分格变换、图像修复、帧预测
-
生成式对抗网络及其衍生网络

生成式对抗网络
GAN:生成式对抗网络通过对抗训练,间接计算出散度(JS),使得模型可以优化。
生成式对抗网络由判别器和生成器组成:
- 判别器(Discriminator):区分真实(real)样本和虚假(fake)样本。对于真实样本,尽可能给出高的评分1;对于虚假数据,尽可能给出低个评分0。
- 生成器(Generator):欺骗判别器。生成虚假数据,使得判别器D能够尽可能给出高的评分1。
框架和目标函数

生成式对抗网络的生成算法
-
随机初始化生成器和判别器
-
交替训练判别器D和生成器G,直到收敛
-
步骤1∶固定生成器G,训练判别器D区分真实图像与合成图像。赋予真实图像高分,赋予合成图像低分。
生成器固定,最优判别器如下:
-

- 步骤2∶固定判别器D,训练生成器G欺骗判别器D。更新生成器的参数,使其合成的图片被生成器D赋予高分。固定判别器,最优化生成器如下:

从概率角度分析GAN

CGAN模型

DCGAN
原始GAN,使用全连接网络作为判别器和生成器,不利于建模图像信息,参数量大,需要大量的计算资源,难以优化。DCGAN,使用卷积神经网络作为判别器和生成器,通过大量的工程实践,经验性地提出一系列的网络结构和优化策略,来有效的建模图。

代码部分
GAN代码
模型定义:
import torch.nn as nn
z_dim = 32
hidden_dim = 128
# 定义生成器
net_G = nn.Sequential(
nn.Linear(z_dim,hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 2))
# 定义判别器
net_D = nn.Sequential(
nn.Linear(2,hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim,1),
nn.Sigmoid())
# 网络放到 GPU 上
net_G = net_G.to(device)
net_D = net_D.to(device)
# 定义网络的优化器
optimizer_G = torch.optim.Adam(net_G.parameters(),lr=0.0001)
optimizer_D = torch.optim.Adam(net_D.parameters(),lr=0.0001)
模型训练:
batch_size = 50
nb_epochs = 1000
loss_D_epoch = []
loss_G_epoch = []
for e in range(nb_epochs):
np.random.shuffle(X)
real_samples = torch.from_numpy(X).type(torch.FloatTensor)
loss_G = 0
loss_D = 0
for t, real_batch in enumerate(real_samples.split(batch_size)):
# 固定生成器G,改进判别器D
# 使用normal_()函数生成一组随机噪声,输入G得到一组样本
z = torch.empty(batch_size,z_dim).normal_().to(device)
fake_batch = net_G(z)
# 将真、假样本分别输入判别器,得到结果
D_scores_on_real = net_D(real_batch.to(device))
D_scores_on_fake = net_D(fake_batch)
# 优化过程中,假样本的score会越来越小,真样本的score会越来越大,下面 loss 的定义刚好符合这一规律,
# 要保证loss越来越小,真样本的score前面要加负号
# 要保证loss越来越小,假样本的score前面是正号(负负得正)
loss = -torch.mean(torch.log(1-D_scores_on_fake) + torch.log(D_scores_on_real))
# 梯度清零
optimizer_D.zero_grad()
# 反向传播优化
loss.backward()
# 更新全部参数
optimizer_D.step()
loss_D += loss
# 固定判别器,改进生成器
# 生成一组随机噪声,输入生成器得到一组假样本
z = torch.empty(batch_size,z_dim).normal_().to(device)
fake_batch = net_G(z)
# 假样本输入判别器得到 score
D_scores_on_fake = net_D(fake_batch)
# 我们希望假样本能够骗过生成器,得到较高的分数,下面的 loss 定义也符合这一规律
# 要保证 loss 越来越小,假样本的前面要加负号
loss = -torch.mean(torch.log(D_scores_on_fake))
optimizer_G.zero_grad()
loss.backward()
optimizer_G.step()
loss_G += loss
if e % 50 ==0:
print(f'\n Epoch {e} , D loss: {loss_D}, G loss: {loss_G}')
loss_D_epoch.append(loss_D)
loss_G_epoch.append(loss_G)
训练结果:
Epoch 950 , D loss: 37.79318618774414, G loss: 44.89418411254883
展示结果:
z = torch.empty(n_samples,z_dim).normal_().to(device)
fake_samples = net_G(z)
fake_data = fake_samples.cpu().data.numpy()
fig, ax = plt.subplots(1, 1, facecolor='#4B6EA9')
all_data = np.concatenate((X,fake_data),axis=0)
Y2 = np.concatenate((np.ones(n_samples),np.zeros(n_samples)))
plot_data(ax, all_data, Y2)
plt.show()

此时的learning_rate为0.0001,batch_size为50,将learning_rate改为0.001,batch_size改为250,后的运行结果为:
Epoch 950 , D loss: 10.98704719543457, G loss: 5.513564586639404

从图中可以看出,生成结果比之前好。
CGAN
判别器与生成器模型:
class Discriminator(nn.Module):
'''全连接判别器,用于1x28x28的MNIST数据,输出是数据和类别'''
def __init__(self):
super(Discriminator, self).__init__()
self.model = nn.Sequential(
nn.Linear(28*28+10, 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid()
)
def forward(self, x, c):
x = x.view(x.size(0), -1)
validity = self.model(torch.cat([x, c], -1))
return validity
class Generator(nn.Module):
'''全连接生成器,用于1x28x28的MNIST数据,输入是噪声和类别'''
def __init__(self, z_dim):
super(Generator, self).__init__()
self.model = nn.Sequential(
nn.Linear(z_dim+10, 128),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(128, 256),
nn.BatchNorm1d(256, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 512),
nn.BatchNorm1d(512, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(in_features=512, out_features=28*28),
nn.Tanh()
)
def forward(self, z, c):
x = self.model(torch.cat([z, c], dim=1))
x = x.view(-1, 1, 28, 28)
return x
# 开始训练,一共训练total_epochs
for epoch in range(total_epochs):
# torch.nn.Module.train() 指的是模型启用 BatchNormalization 和 Dropout
# torch.nn.Module.eval() 指的是模型不启用 BatchNormalization 和 Dropout
# 因此,train()一般在训练时用到, eval() 一般在测试时用到
generator = generator.train()
# 训练一个epoch
for i, data in enumerate(dataloader):
# 加载真实数据
real_images, real_labels = data
real_images = real_images.to(device)
# 把对应的标签转化成 one-hot 类型
tmp = torch.FloatTensor(real_labels.size(0), 10).zero_()
real_labels = tmp.scatter_(dim=1, index=torch.LongTensor(real_labels.view(-1, 1)), value=1)
real_labels = real_labels.to(device)
# 生成数据
# 用正态分布中采样batch_size个随机噪声
z = torch.randn([batch_size, z_dim]).to(device)
# 生成 batch_size 个 ont-hot 标签
c = torch.FloatTensor(batch_size, 10).zero_()
c = c.scatter_(dim=1, index=torch.LongTensor(np.random.choice(10, batch_size).reshape([batch_size, 1])), value=1)
c = c.to(device)
# 生成数据
fake_images = generator(z,c)
# 计算判别器损失,并优化判别器
real_loss = bce(discriminator(real_images, real_labels), ones)
fake_loss = bce(discriminator(fake_images.detach(), c), zeros)
d_loss = real_loss + fake_loss
d_optimizer.zero_grad()
d_loss.backward()
d_optimizer.step()
# 计算生成器损失,并优化生成器
g_loss = bce(discriminator(fake_images, c), ones)
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
# 输出损失
print("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, total_epochs, d_loss.item(), g_loss.item()))
训练结果:
[Epoch 149/150] [D loss: 0.000129] [G loss: 21.908524]
结果展示:
#用于生成效果图
# 生成100个随机噪声向量
fixed_z = torch.randn([100, z_dim]).to(device)
# 生成100个one_hot向量,每类10个
fixed_c = torch.FloatTensor(100, 10).zero_()
fixed_c = fixed_c.scatter_(dim=1, index=torch.LongTensor(np.array(np.arange(0, 10).tolist()*10).reshape([100, 1])), value=1)
fixed_c = fixed_c.to(device)
generator = generator.eval()
fixed_fake_images = generator(fixed_z, fixed_c)
plt.figure(figsize=(8, 8))
for j in range(10):
for i in range(10):
img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy()
img = img.reshape([28, 28])
plt.subplot(10, 10, j*10+i+1)
plt.imshow(img, 'gray')
此时的epoch为150

DCGAN
class D_dcgan(nn.Module):
'''滑动卷积判别器'''
def __init__(self):
super(D_dcgan, self).__init__()
self.conv = nn.Sequential(
# 第一个滑动卷积层,不使用BN,LRelu激活函数
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
# 第二个滑动卷积层,包含BN,LRelu激活函数
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.2, inplace=True),
# 第三个滑动卷积层,包含BN,LRelu激活函数
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
# 第四个滑动卷积层,包含BN,LRelu激活函数
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=1),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True)
)
# 全连接层+Sigmoid激活函数
self.linear = nn.Sequential(nn.Linear(in_features=128, out_features=1), nn.Sigmoid())
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
validity = self.linear(x)
return validity
class G_dcgan(nn.Module):
'''反滑动卷积生成器'''
def __init__(self, z_dim):
super(G_dcgan, self).__init__()
self.z_dim = z_dim
# 第一层:把输入线性变换成256x4x4的矩阵,并在这个基础上做反卷机操作
self.linear = nn.Linear(self.z_dim, 4*4*256)
self.model = nn.Sequential(
# 第二层:bn+relu
nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=0),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
# 第三层:bn+relu
nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
# 第四层:不使用BN,使用tanh激活函数
nn.ConvTranspose2d(in_channels=64, out_channels=1, kernel_size=4, stride=2, padding=2),
nn.Tanh()
)
def forward(self, z):
# 把随机噪声经过线性变换,resize成256x4x4的大小
x = self.linear(z)
x = x.view([x.size(0), 256, 4, 4])
# 生成图片
x = self.model(x)
return x
训练结果:
[Epoch 29/30] [D loss: 0.014453] [G loss: 5.469985]
结果展示:


浙公网安备 33010602011771号