流云飞飞

  博客园 :: 首页 :: 新随笔 :: 联系 :: 订阅 :: 管理 ::

三次样条插值(Cubic Spline Interpolation)

 

样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。本篇介绍力求用容易理解的方式,介绍一下三次样条插值的原理,并附C语言的实现代码。

1. 三次样条曲线原理

假设有以下节点

image

 

 

1.1 定义

样条曲线image 是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件:

a. 在每个分段区间image (i = 0, 1, …, n-1,x递增), image 都是一个三次多项式。

b. 满足image (i = 0, 1, …, n )

c. image ,导数image ,二阶导数image 在[a, b]区间都是连续的,即image曲线是光滑的。

所以n个三次多项式分段可以写作:

image ,i = 0, 1, …, n-1

其中ai, bi, ci, di代表4n个未知系数。

1.2 求解

已知:

a. n+1个数据点[xi, yi], i = 0, 1, …, n

b. 每一分段都是三次多项式函数曲线

c. 节点达到二阶连续

d. 左右两端点处特性(自然边界,固定边界,非节点边界)

根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。

 

插值和连续性:

image, 其中 i = 0, 1, …, n-1

微分连续性:

image , 其中 i = 0, 1, …, n-2

样条曲线的微分式:

imageimage

 

将步长 带入样条曲线的条件:

a. 由image (i = 0, 1, …, n-1)推出

image 

b. 由image (i = 0, 1, …, n-1)推出

image

c. 由 image (i = 0, 1, …, n-2)推出

image

d. 由 image (i = 0, 1, …, n-2)推出

image

 

image ,则

a. image 可写为:

image ,推出

image

b. 将ci, di带入 image 可得:

image 

c. 将bi, ci, di带入image (i = 0, 1, …, n-2)可得:

image 

端点条件

由i的取值范围可知,共有n-1个公式, 但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。 选择不是唯一的,3种比较常用的限制如下。

a. 自由边界(Natural)

首尾两端没有受到任何让它们弯曲的力,即image 。具体表示为image 和 image

则要求解的方程组可写为:

imageimage 

 

b. 固定边界(Clamped)

首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出

image

image

将上述两个公式带入方程组,新的方程组左侧为

image

c. 非节点边界(Not-A-Knot)

指定样条曲线的三次微分匹配,即

image

image

根据image 和image ,则上述条件变为

image

image

新的方程组系数矩阵可写为:

image

 

 

右下图可以看出不同的端点边界对样条曲线的影响:

image

 

1.3 算法总结

假定有n+1个数据节点

image

a. 计算步长image (i = 0, 1, …, n-1)

b. 将数据节点和指定的首位端点条件带入矩阵方程

c. 解矩阵方程,求得二次微分值image。该矩阵为三对角矩阵,具体求法参见我的上篇文章:三对角矩阵的求解

d. 计算样条曲线的系数:

image

其中i = 0, 1, …, n-1

e. 在每个子区间image 中,创建方程

image 

2. 例子

以y=sin(x)为例,  x步长为1,x取值范围是[0,10]。对它使用三次样条插值,插值前后对比如下:

 

posted on 2013-05-31 12:31  流云飞飞  阅读(2678)  评论(0)    收藏  举报