随笔分类 - 递推
摘要:##$AcWing$ $98$. 分形之城 参考题解 一、题目描述 城市的规划在城市建设中是个大问题。 不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现。 而这座名为 $Fractal$ 的城市设想了这样的一个规划方案,如下图所示: 当城区规模扩大之后,
阅读全文
摘要:\(AcWing\) \(95\). 费解的开关 一、题目描述 你玩过 拉灯 游戏吗? \(25\) 盏灯排成一个 \(5×5\) 的方形。 每一个灯都有一个开关,游戏者可以改变它的状态。 每一步,游戏者可以改变某一个灯的状态。 游戏者改变一个灯的状态会产生连锁反应:和这个灯上下左右相邻的灯也要相应
阅读全文
摘要:题目传送门 #include <bits/stdc++.h> using namespace std; const int N = 25; typedef long long LL; LL f[N][N][N]; LL w(LL a, LL b, LL c) { //注意判断的顺序,防止数组下标越界
阅读全文
摘要:题目传送门 一、深度优先搜索 #include <bits/stdc++.h> using namespace std; int n; //毫不意外,只通过了5个测试点,TLE了15个点~ int dfs(int x) { //1就没法继续分了,同时,由于题目说:原数列不做任何修改就直接统计为一种合
阅读全文
摘要:题目传送门 一、递推+高精度 #include <bits/stdc++.h> using namespace std; const int N = 5010; /** * 功能:高精度加法模板 * @param A * @param B * @return */ vector<int> add(v
阅读全文
摘要:题目传送门 总结 1、递推的初始条件 if (j == 0 || j == i) a[i][j] = 1; 2、递推式 a[i][j] = a[i - 1][j - 1] + a[i - 1][j]; #include <bits/stdc++.h> using namespace std; con
阅读全文
摘要:题目传送门 一、贪心法 题目里给的样例是$4,3,2,5,3,5$,可以选择一个区间进行“填坑”操作;我们的贪心策略是: 若$a[i]>a[i-1]$,计数器$sum+=a[i]-a[i-1]$; 贪心证明 假设现在有一个坑,但旁边又有一个坑。你肯定会选择把两个同时填充,都减$1$;那么小的坑肯定会
阅读全文
摘要:题目传送门 用如下两种砖块(可旋转)填充 \(2\times n\) 的墙壁,求出不重复方案数,结果对 \(10^4\) 取模。 按照惯例,定义 $F_n$为填满$2\times n$ 墙壁的方案总数,边界条件 \(F_0 = 1\),对于 \(k<0\),\(F_k=0\)。($F_0$表示无需再
阅读全文
摘要:题目传递门 一、递推思路: 以中间某个通过状态为样本进行分析,比如我们现在面对第$i$种菜,设$f[i]$是前$i$种菜的所有点菜方法,但仔细一想,这样不行,为什么呢?因为只考虑了菜,没考虑钱!不考虑钱的点菜是没有灵魂的~ 所以前$i$种菜的点菜方法,是受钱数制约的,就是,还有另一个钱数的维度。所以
阅读全文
摘要:题目传递门 思路分析: 1、以普通的第$i$个蜂房进行思考,将它的状态描述为:\(f[i]\),这是一个一维数组。它可以由哪些状态转移过来?由题意,可以从$i-1$,$i-2$而来。 根据加法原理有$f[i]=f[i-1]+f[i-2]$,其中$i>2$,而$f[1]=f[2]=1$。 这就是一个斐
阅读全文
摘要:题目传递门 一、深搜 别的也不会,一个深搜走天下!深搜我们主要关心的是下一步噢~ 怎么个深搜法呢?我们模拟一下,有一个装个顺序号小球的队列,一个个准备放到一个栈里。一共几下面几种场景: 1、队列为空,栈为空。 这种场景的下一步就只能是“游戏终止”,而“游戏终止”时我们应该方案数+1。 2、队列为空,
阅读全文
摘要:题目传递门 一、深搜尝试 上来简单一看,无脑暴搜开始! 注意 //马所在的位置 ctrl[x][y] = 1; ctrl[x - 1][y - 2] = 1; ctrl[x - 2][y - 1] = 1; ctrl[x + 1][y + 2] = 1; ctrl[x + 2][y + 1] = 1
阅读全文
摘要:题目传递门 解题思路: 这道题大神们都不屑一顾,我却认为这是一道非常好的试题,可以让孩子们锻炼的东西太多了,太有用了。我试着推导一下,给不清楚的同学解惑。 1、假设第$10$天吃完(就是一个猜想的数字,和答案无关,也可以设成第$i$天吃完,太小孩子不好理解),就是第$10$天早上有$1$个桃子,设$
阅读全文

浙公网安备 33010602011771号