决策树

这里使用ID3算法构造决策树,引用http://my.oschina.net/dfsj66011/blog/343647的内容。

outlook temperature humidity windy play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

 (可以看到在决策树构建中,特征的取值需要时标称的)

现在我们使用ID3归纳决策树的方法来求解该问题。

预备知识:信息熵

熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:

通常以2为底数,所以信息熵的单位是bit。

补充两个对数去处公式:

ID3算法

构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。

在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:

属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。

对每项指标分别统计:在不同的取值下打球和不打球的次数。

下面我们计算当已知变量outlook的值时,信息熵为多少。

outlook=sunny时,2/5的概率打球,3/5的概率不打球。entropy=0.971

outlook=overcast时,entropy=0

outlook=rainy时,entropy=0.971

而根据历史统计数据,outlook取值为sunny、overcast、rainy的概率分别是5/14、4/14、5/14,所以当已知变量 outlook的值时,信息熵为:5/14 × 0.971 + 4/14 × 0 + 5/14 × 0.971 = 0.693

这样的话系统熵就从0.940下降到了0.693,信息增溢gain(outlook)为0.940-0.693=0.247

同样可以计算出gain(temperature)=0.029,gain(humidity)=0.152,gain(windy)=0.048。

gain(outlook)最大(即outlook在第一步使系统的信息熵下降得最快),所以决策树的根节点就取outlook。

********************************************************************************************

http://www.cnblogs.com/wentingtu/archive/2011/12/22/2297405.html随机森林

这里只是准备简单谈谈基础的内容,主要参考一下别人的文章,对于随机森林与GBDT,有两个地方比较重要,首先是information gain,其次是决策树。这里特别推荐Andrew Moore大牛的Decision Trees Tutorial,与Information Gain Tutorial。Moore的Data Mining Tutorial系列非常赞,看懂了上面说的两个内容之后的文章才能继续读下去。

决策树实际上是将空间用超平面进行划分的一种方法,每次分割的时候,都将当前的空间一分为二,比如说下面的决策树:

image

就是将空间划分成下面的样子:

image

这样使得每一个叶子节点都是在空间中的一个不相交的区域,在进行决策的时候,会根据输入样本每一维feature的值,一步一步往下,最后使得样本落入N个区域中的一个(假设有N个叶子节点)

随机森林(Random Forest):

随机森林是一个最近比较火的算法,它有很多的优点:

  • 在数据集上表现良好
  • 在当前的很多数据集上,相对其他算法有着很大的优势
  • 它能够处理很高维度(feature很多)的数据,并且不用做特征选择
  • 在训练完后,它能够给出哪些feature比较重要
  • 在创建随机森林的时候,对generlization error使用的是无偏估计
  • 训练速度快
  • 在训练过程中,能够检测到feature间的互相影响
  • 容易做成并行化方法
  • 实现比较简单

随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之 后,当有一个新的输 入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本 为那一类。

在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,random forest对输入的数据要进行行、列的采样。对于行采样,采用有放回的方式,也就是在采样得到的样本集合中,可能有重复的样本。假设输入样本为N个,那 么采样的样本也为N个。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行列采样,从M 个feature中,选择m个(m << M)。之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一 个分类。一般很多的决策树算法都一个重要的步骤 - 剪枝,但是这里不这样干,由于之前的两个随机采样的过程保证了随机性,所以就算不剪枝,也不会出现over-fitting。

按这种算法得到的随机森林中的每一棵都是很弱的,但是大家组合起来就很厉害了。我觉得可以这样比喻随机森林算法:每一棵决策树就是一个 精通于某一个窄领域 的专家(因为我们从M个feature中选择m让每一棵决策树进行学习),这样在随机森林中就有了很多个精通不同领域的专家,对一个新的问题(新的输入数 据),可以用不同的角度去看待它,最终由各个专家,投票得到结果。

随机森林的过程请参考Mahout的random forest 。这个页面上写的比较清楚了,其中可能不明白的就是Information Gain,可以看看之前推荐过的Moore的页面。

 

posted @ 2016-03-01 12:15  sweetxy  阅读(392)  评论(0)    收藏  举报