11大Java开源中文分词器的使用方法和分词效果对比

本文的目标有两个:

1、学会使用11大Java开源中文分词器

2、对比分析11大Java开源中文分词器的分词效果

本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。

11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:

/**
 * 获取文本的所有分词结果, 对比不同分词器结果
 * @author 杨尚川
 */
public interface WordSegmenter {
    /**
     * 获取文本的所有分词结果
     * @param text 文本
     * @return 所有的分词结果,去除重复
     */
    default public Set<String> seg(String text) {
        return segMore(text).values().stream().collect(Collectors.toSet());
    }
    /**
     * 获取文本的所有分词结果
     * @param text 文本
     * @return 所有的分词结果,KEY 为分词器模式,VALUE 为分词器结果
     */
    public Map<String, String> segMore(String text);
}

 

从上面的定义我们知道,在Java中,同样的方法名称和参数,但是返回值不同,这种情况不可以使用重载。

这两个方法的区别在于返回值,每一个分词器都可能有多种分词模式,每种模式的分词结果都可能不相同,第一个方法忽略分词器模式,返回所有模式的所有不重复分词结果,第二个方法返回每一种分词器模式及其对应的分词结果。

在这里,需要注意的是我们使用了Java8中的新特性默认方法,并使用stream把一个map的value转换为不重复的集合。

 

下面我们利用这11大分词器来实现这个接口:

1、word分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    for(SegmentationAlgorithm segmentationAlgorithm : SegmentationAlgorithm.values()){
        map.put(segmentationAlgorithm.getDes(), seg(text, segmentationAlgorithm));
    }
    return map;
}
private static String seg(String text, SegmentationAlgorithm segmentationAlgorithm) {
    StringBuilder result = new StringBuilder();
    for(Word word : WordSegmenter.segWithStopWords(text, segmentationAlgorithm)){
        result.append(word.getText()).append(" ");
    }
    return result.toString();
}

 

2、Ansj分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    StringBuilder result = new StringBuilder();
    for(Term term : BaseAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("BaseAnalysis", result.toString());

    result.setLength(0);
    for(Term term : ToAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("ToAnalysis", result.toString());

    result.setLength(0);
    for(Term term : NlpAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("NlpAnalysis", result.toString());

    result.setLength(0);
    for(Term term : IndexAnalysis.parse(text)){
        result.append(term.getName()).append(" ");
    }
    map.put("IndexAnalysis", result.toString());

    return map;
}

 

3、Stanford分词器

private static final StanfordCoreNLP CTB = new StanfordCoreNLP("StanfordCoreNLP-chinese-ctb");
private static final StanfordCoreNLP PKU = new StanfordCoreNLP("StanfordCoreNLP-chinese-pku");
private static final PrintStream NULL_PRINT_STREAM = new PrintStream(new NullOutputStream(), false);
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("Stanford Beijing University segmentation", seg(PKU, text));
    map.put("Stanford Chinese Treebank segmentation", seg(CTB, text));
    return map;
}
private static String seg(StanfordCoreNLP stanfordCoreNLP, String text){
    PrintStream err = System.err;
    System.setErr(NULL_PRINT_STREAM);
    Annotation document = new Annotation(text);
    stanfordCoreNLP.annotate(document);
    List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.class);
    StringBuilder result = new StringBuilder();
    for(CoreMap sentence: sentences) {
        for (CoreLabel token: sentence.get(CoreAnnotations.TokensAnnotation.class)) {
            String word = token.get(CoreAnnotations.TextAnnotation.class);;
            result.append(word).append(" ");
        }
    }
    System.setErr(err);
    return result.toString();
}

 

4、FudanNLP分词器

private static CWSTagger tagger = null;
static{
    try{
        tagger = new CWSTagger("lib/fudannlp_seg.m");
        tagger.setEnFilter(true);
    }catch(Exception e){
        e.printStackTrace();
    }
}
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("FudanNLP", tagger.tag(text));
    return map;
}

 

5、Jieba分词器

private static final JiebaSegmenter JIEBA_SEGMENTER = new JiebaSegmenter();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("INDEX", seg(text, SegMode.INDEX));
    map.put("SEARCH", seg(text, SegMode.SEARCH));
    return map;
}
private static String seg(String text, SegMode segMode) {
    StringBuilder result = new StringBuilder();                
    for(SegToken token : JIEBA_SEGMENTER.process(text, segMode)){
        result.append(token.word.getToken()).append(" ");
    }
    return result.toString(); 
}

 

6、Jcseg分词器

private static final JcsegTaskConfig CONFIG = new JcsegTaskConfig();
private static final ADictionary DIC = DictionaryFactory.createDefaultDictionary(CONFIG);
static {
    CONFIG.setLoadCJKSyn(false);
    CONFIG.setLoadCJKPinyin(false);
}
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("复杂模式", segText(text, JcsegTaskConfig.COMPLEX_MODE));
    map.put("简易模式", segText(text, JcsegTaskConfig.SIMPLE_MODE));

    return map;
}
private String segText(String text, int segMode) {
    StringBuilder result = new StringBuilder();        
    try {
        ISegment seg = SegmentFactory.createJcseg(segMode, new Object[]{new StringReader(text), CONFIG, DIC});
        IWord word = null;
        while((word=seg.next())!=null) {         
            result.append(word.getValue()).append(" ");
        }
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

 

7、MMSeg4j分词器

private static final Dictionary DIC = Dictionary.getInstance();
private static final SimpleSeg SIMPLE_SEG = new SimpleSeg(DIC);
private static final ComplexSeg COMPLEX_SEG = new ComplexSeg(DIC);
private static final MaxWordSeg MAX_WORD_SEG = new MaxWordSeg(DIC);
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put(SIMPLE_SEG.getClass().getSimpleName(), segText(text, SIMPLE_SEG));
    map.put(COMPLEX_SEG.getClass().getSimpleName(), segText(text, COMPLEX_SEG));
    map.put(MAX_WORD_SEG.getClass().getSimpleName(), segText(text, MAX_WORD_SEG));
    return map;
}
private String segText(String text, Seg seg) {
    StringBuilder result = new StringBuilder();
    MMSeg mmSeg = new MMSeg(new StringReader(text), seg);        
    try {
        Word word = null;
        while((word=mmSeg.next())!=null) {       
            result.append(word.getString()).append(" ");
        }
    } catch (IOException ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

 

8、IKAnalyzer分词器

@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("智能切分", segText(text, true));
    map.put("细粒度切分", segText(text, false));

    return map;
}
private String segText(String text, boolean useSmart) {
    StringBuilder result = new StringBuilder();
    IKSegmenter ik = new IKSegmenter(new StringReader(text), useSmart);        
    try {
        Lexeme word = null;
        while((word=ik.next())!=null) {          
            result.append(word.getLexemeText()).append(" ");
        }
    } catch (IOException ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();
}

 

9、Paoding分词器

private static final PaodingAnalyzer ANALYZER = new PaodingAnalyzer();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();

    map.put("MOST_WORDS_MODE", seg(text, PaodingAnalyzer.MOST_WORDS_MODE));
    map.put("MAX_WORD_LENGTH_MODE", seg(text, PaodingAnalyzer.MAX_WORD_LENGTH_MODE));
    
    return map;
}
private static String seg(String text, int mode){
    ANALYZER.setMode(mode);
    StringBuilder result = new StringBuilder();
    try {
        Token reusableToken = new Token();
        TokenStream stream = ANALYZER.tokenStream("", new StringReader(text));
        Token token = null;
        while((token = stream.next(reusableToken)) != null){
            result.append(token.term()).append(" ");
        }
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    return result.toString();          
}

 

10、smartcn分词器

private static final SmartChineseAnalyzer SMART_CHINESE_ANALYZER = new SmartChineseAnalyzer();
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("smartcn", segText(text));
    return map;
}
private static String segText(String text) {
    StringBuilder result = new StringBuilder();
    try {
        TokenStream tokenStream = SMART_CHINESE_ANALYZER.tokenStream("text", new StringReader(text));
        tokenStream.reset();
        while (tokenStream.incrementToken()){
            CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.class);
            result.append(charTermAttribute.toString()).append(" ");
        }
        tokenStream.close();
    }catch (Exception e){
        e.printStackTrace();
    }
    return result.toString();
}

 

11、HanLP分词器

private static final Segment N_SHORT_SEGMENT = new NShortSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
private static final Segment DIJKSTRA_SEGMENT = new DijkstraSegment().enableCustomDictionary(false).enablePlaceRecognize(true).enableOrganizationRecognize(true);
@Override
public Map<String, String> segMore(String text) {
    Map<String, String> map = new HashMap<>();
    map.put("标准分词", standard(text));
    map.put("NLP分词", nlp(text));
    map.put("索引分词", index(text));
    map.put("N-最短路径分词", nShort(text));
    map.put("最短路径分词", shortest(text));
    map.put("极速词典分词", speed(text));
    return map;
}
private static String standard(String text) {
    StringBuilder result = new StringBuilder();
    StandardTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String nlp(String text) {
    StringBuilder result = new StringBuilder();
    NLPTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String index(String text) {
    StringBuilder result = new StringBuilder();
    IndexTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String speed(String text) {
    StringBuilder result = new StringBuilder();
    SpeedTokenizer.segment(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String nShort(String text) {
    StringBuilder result = new StringBuilder();
    N_SHORT_SEGMENT.seg(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}
private static String shortest(String text) {
    StringBuilder result = new StringBuilder();
    DIJKSTRA_SEGMENT.seg(text).forEach(term->result.append(term.word).append(" "));
    return result.toString();
}

 

现在我们已经实现了本文的第一个目的:学会使用11大Java开源中文分词器。

最后我们来实现本文的第二个目的:对比分析11大Java开源中文分词器的分词效果,程序如下:

public static Map<String, Set<String>> contrast(String text){
    Map<String, Set<String>> map = new LinkedHashMap<>();
    map.put("word分词器", new WordEvaluation().seg(text));
    map.put("Stanford分词器", new StanfordEvaluation().seg(text));
    map.put("Ansj分词器", new AnsjEvaluation().seg(text));
    map.put("HanLP分词器", new HanLPEvaluation().seg(text));
    map.put("FudanNLP分词器", new FudanNLPEvaluation().seg(text));
    map.put("Jieba分词器", new JiebaEvaluation().seg(text));
    map.put("Jcseg分词器", new JcsegEvaluation().seg(text));
    map.put("MMSeg4j分词器", new MMSeg4jEvaluation().seg(text));
    map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().seg(text));
    map.put("smartcn分词器", new SmartCNEvaluation().seg(text));
    return map;
}
public static Map<String, Map<String, String>> contrastMore(String text){
    Map<String, Map<String, String>> map = new LinkedHashMap<>();
    map.put("word分词器", new WordEvaluation().segMore(text));
    map.put("Stanford分词器", new StanfordEvaluation().segMore(text));
    map.put("Ansj分词器", new AnsjEvaluation().segMore(text));
    map.put("HanLP分词器", new HanLPEvaluation().segMore(text));
    map.put("FudanNLP分词器", new FudanNLPEvaluation().segMore(text));
    map.put("Jieba分词器", new JiebaEvaluation().segMore(text));
    map.put("Jcseg分词器", new JcsegEvaluation().segMore(text));
    map.put("MMSeg4j分词器", new MMSeg4jEvaluation().segMore(text));
    map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().segMore(text));
    map.put("smartcn分词器", new SmartCNEvaluation().segMore(text));
    return map;
}
public static void show(Map<String, Set<String>> map){
    map.keySet().forEach(k -> {
        System.out.println(k + " 的分词结果:");
        AtomicInteger i = new AtomicInteger();
        map.get(k).forEach(v -> {
            System.out.println("\t" + i.incrementAndGet() + " 、" + v);
        });
    });
}
public static void showMore(Map<String, Map<String, String>> map){
    map.keySet().forEach(k->{
        System.out.println(k + " 的分词结果:");
        AtomicInteger i = new AtomicInteger();
        map.get(k).keySet().forEach(a -> {
            System.out.println("\t" + i.incrementAndGet()+ " 、【"   + a + "】\t" + map.get(k).get(a));
        });
    });
}
public static void main(String[] args) {
    show(contrast("我爱楚离陌"));
    showMore(contrastMore("我爱楚离陌"));
}

 

运行结果如下:

********************************************
word分词器 的分词结果:
    1 、我 爱 楚离陌 
Stanford分词器 的分词结果:
    1 、我 爱 楚 离陌 
    2 、我 爱 楚离陌 
Ansj分词器 的分词结果:
    1 、我 爱 楚离 陌 
    2 、我 爱 楚 离 陌 
HanLP分词器 的分词结果:
    1 、我 爱 楚 离 陌 
smartcn分词器 的分词结果:
    1 、我 爱 楚 离 陌 
FudanNLP分词器 的分词结果:
    1 、我 爱楚离陌
Jieba分词器 的分词结果:
    1 、我爱楚 离 陌 
Jcseg分词器 的分词结果:
    1 、我 爱 楚 离 陌 
MMSeg4j分词器 的分词结果:
    1 、我爱 楚 离 陌 
IKAnalyzer分词器 的分词结果:
    1 、我 爱 楚 离 陌 
********************************************
********************************************
word分词器 的分词结果:
    1 、【全切分算法】    我 爱 楚离陌 
    2 、【双向最大最小匹配算法】    我 爱 楚离陌 
    3 、【正向最大匹配算法】    我 爱 楚离陌 
    4 、【双向最大匹配算法】    我 爱 楚离陌 
    5 、【逆向最大匹配算法】    我 爱 楚离陌 
    6 、【正向最小匹配算法】    我 爱 楚离陌 
    7 、【双向最小匹配算法】    我 爱 楚离陌 
    8 、【逆向最小匹配算法】    我 爱 楚离陌 
Stanford分词器 的分词结果:
    1 、【Stanford Chinese Treebank segmentation】    我 爱 楚离陌 
    2 、【Stanford Beijing University segmentation】    我 爱 楚 离陌 
Ansj分词器 的分词结果:
    1 、【BaseAnalysis】    我 爱 楚 离 陌 
    2 、【IndexAnalysis】    我 爱 楚 离 陌 
    3 、【ToAnalysis】    我 爱 楚 离 陌 
    4 、【NlpAnalysis】    我 爱 楚离 陌 
HanLP分词器 的分词结果:
    1 、【NLP分词】    我 爱 楚 离 陌 
    2 、【标准分词】    我 爱 楚 离 陌 
    3 、【N-最短路径分词】    我 爱 楚 离 陌 
    4 、【索引分词】    我 爱 楚 离 陌 
    5 、【最短路径分词】    我 爱 楚 离 陌 
    6 、【极速词典分词】    我 爱 楚 离 陌 
smartcn分词器 的分词结果:
    1 、【smartcn】    我 爱 楚 离 陌 
FudanNLP分词器 的分词结果:
    1 、【FudanNLP】    我 爱楚离陌
Jieba分词器 的分词结果:
    1 、【SEARCH】    我爱楚 离 陌 
    2 、【INDEX】    我爱楚 离 陌 
Jcseg分词器 的分词结果:
    1 、【简易模式】    我 爱 楚 离 陌 
    2 、【复杂模式】    我 爱 楚 离 陌 
MMSeg4j分词器 的分词结果:
    1 、【SimpleSeg】    我爱 楚 离 陌 
    2 、【ComplexSeg】    我爱 楚 离 陌 
    3 、【MaxWordSeg】    我爱 楚 离 陌 
IKAnalyzer分词器 的分词结果:
    1 、【智能切分】    我 爱 楚 离 陌 
    2 、【细粒度切分】    我 爱 楚 离 陌 
********************************************

 

posted @ 2016-10-31 19:51  羊大葱  阅读(50210)  评论(1编辑  收藏  举报