实验二

实验内容:

任务一:

代码部分:

T.h:

#pragma once

#include <string>

// 类T: 声明
class T {
// 对象属性、方法
public:
    T(int x = 0, int y = 0);   // 普通构造函数
    T(const T &t);  // 复制构造函数
    T(T &&t);       // 移动构造函数
    ~T();           // 析构函数

    void adjust(int ratio);      // 按系数成倍调整数据
    void display() const;           // 以(m1, m2)形式显示T类对象信息

private:
    int m1, m2;

// 类属性、方法
public:
    static int get_cnt();          // 显示当前T类对象总数

public:
    static const std::string doc;       // 类T的描述信息
    static const int max_cnt;           // 类T对象上限

private:
    static int cnt;         // 当前T类对象数目

// 类T友元函数声明
    friend void func();
};

// 普通函数声明
void func();

T.cpp:

#include "T.h"
#include <iostream>
#include <string>

// 类T实现

// static成员数据类外初始化
const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

// 类方法
int T::get_cnt() {
   return cnt;
}

// 对象方法
T::T(int x, int y): m1{x}, m2{y} { 
    ++cnt; 
    std::cout << "T constructor called.\n";
} 

T::T(const T &t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T move constructor called.\n";
}    

T::~T() {
    --cnt;
    std::cout << "T destructor called.\n";
}           

void T::adjust(int ratio) {
    m1 *= ratio;
    m2 *= ratio;
}    

void T::display() const {
    std::cout << "(" << m1 << ", " << m2 << ")" ;
}     

// 普通函数实现
void func() {
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = "; t5.display(); std::cout << '\n';
}

task1.cpp:

#include "T.h"
#include <iostream>

void test_T();

int main() {
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

void test_T() {
    using std::cout;
    using std::endl;

    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl << endl;

    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t4 = "; t4.display(); cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

结果截图:

实验二—任务1—结果1

问题1:不能继续运行

问题1结果截图:实验二—任务1—结果2

原因分析:c++中使用任何函数均需要声明,我们删除了普通声明函数在后面的测试中就不可以调用,这个代码提供了接口,是不可以删除的

问题2:

第一个:普通构造函数

功能:创建新对象并初始化成员变量;提供默认参数,支持灵活的对象创建

调用时机:

在test_T中:

T t1; // 调用 T(0, 0) - 使用默认参数
T t2(3, 4); // 调用 T(3, 4) - 显式参数

在func()中:

T t5(42);                // 调用 T(42, 0) - 部分默认参数(创建全新对象时)

第二个:复制构造函数

功能:创建新对象作为现有对象的副本;执行深拷贝,防止资源共享问题;维护对象计数

调用时机:

在test_T中:

T t3(t2);                // 调用 T(const T &t) - 显式复制构造(需要独立副本时)

第三个:移动构造函数

功能:从临时对象或即将销毁的对象"窃取"资源;提高性能,避免不必要的深拷贝;将源对象置于可析构状态

调用时机:

在test_T中:

T t4(std::move(t2));     // 调用 T(T &&t) - 显式移动构造(临时对象,返回值创建)

第四个:析构函数

功能:对象生命周期结束时自动清理资源;减少对象计数;释放动态分配的内存

调用时机:

在前面三个函数调用结束后调用

问题3:不能运行

结果截图:

实验二—任务1—结果3

原因分析:在头文件中进行定义是不对的,静态成员变量需要在类外单独定义,类内定义造成重复定义,意味着重复分配空间,会产生报错

 

任务二:

代码部分:

Complex.h:

#pragma once
#include <string>

class Complex {
private:
    double real;
    double imag;

public:
    // 类属性
    static const std::string doc;

    // 构造函数
    Complex(double r = 0.0, double i = 0.0);
    Complex(const Complex& other);
    
    // 对象方法
    double get_real() const;
    double get_imag() const;
    void add(const Complex& other);

    // 友元函数声明
    friend void output(const Complex& c);
    friend double abs(const Complex& c);
    friend Complex add(const Complex& c1, const Complex& c2);
    friend bool is_equal(const Complex& c1, const Complex& c2);
    friend bool is_not_equal(const Complex& c1, const Complex& c2);
};

// 友元函数声明
void output(const Complex& c);
double abs(const Complex& c);
Complex add(const Complex& c1, const Complex& c2);
bool is_equal(const Complex& c1, const Complex& c2);
bool is_not_equal(const Complex& c1, const Complex& c2);

Complex.cpp:

#include "Complex.h"
#include <iostream>
#include <cmath>

// 静态成员初始化
const std::string Complex::doc = "a simplified complex class";

// 构造函数实现
Complex::Complex(double r, double i) : real(r), imag(i) {}

Complex::Complex(const Complex& other) : real(other.real), imag(other.imag) {}

// 对象方法实现
double Complex::get_real() const {
    return real;
}

double Complex::get_imag() const {
    return imag;
}

void Complex::add(const Complex& other) {
    real += other.real;
    imag += other.imag;
}

// 友元函数实现
void output(const Complex& c) {
    std::cout << c.real;
    if (c.imag >= 0) {
        std::cout << " + " << c.imag << "i";
    } else {
        std::cout << " - " << -c.imag << "i";
    }
}

double abs(const Complex& c) {
    return std::sqrt(c.real * c.real + c.imag * c.imag);
}

Complex add(const Complex& c1, const Complex& c2) {
    return Complex(c1.real + c2.real, c1.imag + c2.imag);
}

bool is_equal(const Complex& c1, const Complex& c2) {
    return c1.real == c2.real && c1.imag == c2.imag;
}

bool is_not_equal(const Complex& c1, const Complex& c2) {
    return !is_equal(c1, c2);
}

task2:

#include "Complex.h"
#include <iostream>
#include <iomanip>
#include <complex>

void test_Complex();
void test_std_complex();

int main() {
    std::cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();

    std::cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
}

void test_Complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl << endl;

    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);

    cout << "c1 = "; output(c1); cout << endl;
    cout << "c2 = "; output(c2); cout << endl;
    cout << "c3 = "; output(c3); cout << endl;
    cout << "c4 = "; output(c4); cout << endl;
    cout << "c5.real = " << c5.get_real() 
         << ", c5.imag = " << c5.get_imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1.add(c2);
    cout << "c1 += c2, c1 = "; output(c1); cout << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
}

void test_std_complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);

    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;

    cout << "c5.real = " << c5.real() 
         << ", c5.imag = " << c5.imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2)<< endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

结果截图:

 实验二—任务2—结果1

实验二—任务2—结果2

问题1:使用形式上标准库更简洁,更加符合数学表达;函数和运算内在是有关联的,具备数学一致性,语义上等价,功能上对应

问题2:

2-1:是

add(c1, c2):需要读取 c1.real, c1.imag, c2.real, c2.imag

is_equal(c1, c2):需要比较两个对象的所有私有成员

output(c):需要读取输出对象的实部和虚部

abs(c):需要读取对象的实部和虚部进行计算

2-2:标准库 std::complex 没有把 abs 设为友元

2-3:适合友元函数的情况

(1)设计通用库的时候

(2)在考略性能优先的情况

(3)在公共接口不能够实现访问的情况下

(4)当函数需要处理多个对象的私有数据时

问题3:需要将复制构造函数声明为,编译器需要执行隐式转换,通过将复制构造函数设置为explicit,来拒绝隐式转换,从而禁止了拷贝初始化,最终使得“=”失效
explicit Complex(const Complex& other);  // 复制构造函数设为 explicit

 

任务三:

代码部分:

PlayerControl.cpp:

#include "PlayerControl.h"
#include <iostream>
#include <algorithm>   

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

// 待补足
// 1. 将输入字符串转为小写,实现大小写不敏感
// 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举
// 3. 未匹配的字符串返回ControlType::Unknown
// 4. 每次成功调用parse时递增total_cnt
ControlType PlayerControl::parse(const std::string& control_str) {
     // 1. 将输入字符串转为小写,实现大小写不敏感
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(),
                   [](unsigned char c) { return std::tolower(c); });
    
    // 2. 匹配命令并返回对应枚举
    ControlType result;
    if (lower_str == "play") {
        result = ControlType::Play;
    } else if (lower_str == "pause") {
        result = ControlType::Pause;
    } else if (lower_str == "next") {
        result = ControlType::Next;
    } else if (lower_str == "prev") {
        result = ControlType::Prev;
    } else if (lower_str == "stop") {
        result = ControlType::Stop;
    } else {
        result = ControlType::Unknown;
    }
    
    // 4. 每次成功调用parse时递增total_cnt
    total_cnt++;
    
    return result;
    
    
    
    

}

void PlayerControl::execute(ControlType cmd) const {
    switch (cmd) {
    case ControlType::Play:  std::cout << "[play] Playing music...\n"; break;
    case ControlType::Pause: std::cout << "[Pause] Music paused\n";    break;
    case ControlType::Next:  std::cout << "[Next] Skipping to next track\n"; break;
    case ControlType::Prev:  std::cout << "[Prev] Back to previous track\n"; break;
    case ControlType::Stop:  std::cout << "[Stop] Music stopped\n"; break;
    default:                 std::cout << "[Error] unknown control\n"; break;
    }
}

int PlayerControl::get_cnt() {
    return total_cnt;
}

PlayerControl.h:

#pragma once
#include <string>

enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown};

class PlayerControl {
public:
    PlayerControl();

    ControlType parse(const std::string& control_str);   // 实现std::string --> ControlType转换
    void execute(ControlType cmd) const;   // 执行控制操作(以打印输出模拟)       

    static int get_cnt();

private:
    static int total_cnt;   
};

task3.cpp:

#include "PlayerControl.h"
#include <iostream>

void test() {
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while(std::cin >> control_str) {
        if(control_str == "quit")
            break;
        
        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main() {
    test();
}

结果截图:

实验二—任务3—结果1

思考:达成使用emoji的效果,可以修改execute函数:

void PlayerControl::execute(ControlType cmd) const {
    switch (cmd) {
    case ControlType::Play:  
        std::cout << "🎵  Playing music...\n"; 
        break;
    case ControlType::Pause: 
        std::cout << "⏸️  Music paused\n";    
        break;
    case ControlType::Next:  
        std::cout << "⏭️  Skipping to next track\n"; 
        break;
    case ControlType::Prev:  
        std::cout << "⏮️  Back to previous track\n"; 
        break;
    case ControlType::Stop:  
        std::cout << "⏹️  Music stopped\n"; 
        break;
    default:                 
        std::cout << "❌  Unknown control command\n"; 
        break;
    }
}

 

任务四:

代码部分:

Fraction.cpp:

#include "Fraction.h"
#include <iostream>
#include <stdexcept>
#include <cmath>

using namespace std;

// 静态成员初始化
const string Fraction::doc = "Fraction类 v 0.01版.\n目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

// 辅助函数:求最大公约数
int gcd(int a, int b) {
    a = abs(a);
    b = abs(b);
    while (b != 0) {
        int temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}

// 私有方法:分数化简
void Fraction::simplify() {
    if (down == 0) {
        // 分母为0时,设置为0/1(表示无效分数)
        up = 0;
        down = 1;
        return;
    }
    
    // 处理符号:确保分母为正
    if (down < 0) {
        up = -up;
        down = -down;
    }
    
    // 约分
    int common = gcd(up, down);
    if (common != 0) {
        up /= common;
        down /= common;
    }
}

// 构造函数
Fraction::Fraction(int numerator, int denominator) : up(numerator), down(denominator) {
    simplify();
}

Fraction::Fraction(const Fraction& other) : up(other.up), down(other.down) {}

// 对象方法实现
int Fraction::get_up() const {
    return up;
}

int Fraction::get_down() const {
    return down;
}

Fraction Fraction::negative() const {
    return Fraction(-up, down);
}

// 工具函数实现
Fraction add(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.get_up() * f2.get_down() + f2.get_up() * f1.get_down();
    int new_down = f1.get_down() * f2.get_down();
    return Fraction(new_up, new_down);
}

Fraction sub(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.get_up() * f2.get_down() - f2.get_up() * f1.get_down();
    int new_down = f1.get_down() * f2.get_down();
    return Fraction(new_up, new_down);
}

Fraction mul(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.get_up() * f2.get_up();
    int new_down = f1.get_down() * f2.get_down();
    return Fraction(new_up, new_down);
}

Fraction.h:

#pragma once
#include <string>

class Fraction {
private:
    int up;     // 分子
    int down;   // 分母
    
    // 私有方法:分数化简
    void simplify();

public:
    // 类属性
    static const std::string doc;

    // 构造函数
    Fraction(int numerator = 0, int denominator = 1);
    Fraction(const Fraction& other);
    
    // 对象方法
    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    // 友元函数声明(用于输出)
    friend void output(const Fraction& f);
};

// 工具函数声明
Fraction add(const Fraction& f1, const Fraction& f2);
Fraction sub(const Fraction& f1, const Fraction& f2);
Fraction mul(const Fraction& f1, const Fraction& f2);
Fraction div(const Fraction& f1, const Fraction& f2);
void output(const Fraction& f);

// 辅助函数
int gcd(int a, int b);

task4.cpp:

#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main() {
    std::cout << "测试1: Fraction类基础功能测试\n";
    test1();

    std::cout << "\n测试2: 分母为0测试: \n";
    test2();
}

void test1() {
    using std::cout;
    using std::endl;   

    cout << "Fraction类测试: " << endl;
    cout << Fraction::doc << endl << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);
    cout << "f1 = "; output(f1); cout << endl;
    cout << "f2 = "; output(f2); cout << endl;
    cout << "f3 = "; output(f3); cout << endl;
    cout << "f4 = "; output(f4); cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = "; output(f5); cout << endl;
    cout << "f5.get_up() = " << f5.get_up() 
        << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
    cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
    cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
    cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
    cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
}

void test2() {
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);
    cout << "f6 = "; output(f6); cout << endl;
    cout << "f7 = "; output(f7); cout << endl;
    cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
}

结果截图:

实验二—任务4—结果1

问题回答:我选择的是自由函数:

// 自由函数,直接声明在全局作用域
Fraction add(const Fraction& f1, const Fraction& f2);
Fraction sub(const Fraction& f1, const Fraction& f2);
void output(const Fraction& f);

1. 友元方案

优点:

直接访问私有成员,性能最佳

代码简洁,无需通过getter接口

对于需要访问多个对象私有数据的函数很合适

缺点:

破坏封装性

友元关系难以维护

在头文件中暴露实现细节

2. 静态成员函数方案

优点:

逻辑上与类紧密关联

良好的封装性

调用形式:Fraction::add(f1, f2)

缺点:

静态函数无法访问非静态成员

仍然需要通过getter接口

语义上不如自由函数自然(加法不是类的"静态"特性)

3. 命名空间+自由函数

优点:

避免全局命名空间污染

良好的模块化

清晰的逻辑分组

缺点:

对于简单项目可能过度设计

调用稍显冗长:FractionOps::add(f1, f2)

4. 成员函数方案

优点:

符合面向对象设计

自然的调用语法:f1.add(f2)

缺点:

不适合对称性操作(如 add(f1, f2)

无法支持 f1 + f2 这样的操作符重载风格

 

对于分数类的数学运算,选择自由函数的原因:

保持了数学运算的对称性

提供了良好的封装性

调用语法自然直观

为将来可能的操作符重载留下空间

 

posted @ 2025-10-29 05:15  栖月水生  阅读(5)  评论(1)    收藏  举报