量子模拟
Pure state and mixed state
See here.
qPCA
Compute
\[ \operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right)
\]
where \(\rho\) and \(\sigma\) are two density matrix, \(S\) is the swap operator.
Note that \(e^{-iS\Delta t} = \cos (\Delta t) I_1 \otimes I_2 - i\sin(\Delta t) S\).
First considering that \(\rho\) and \(\sigma\) are density matrix of pure state, i.e, \(\rho = \ket{\psi_1} \bra{\psi_1}, \sigma = \ket{\psi_2} \bra{\psi_2}\),then
\[\begin{aligned}
e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2}
\end{aligned} = \cos (\Delta t)\ket{\psi_1} \ket{\psi_2} - i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}.
\]
So we have
\[\begin{aligned}
& e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t}
\\
=&
e^{-iS\Delta t} \ket{\psi_1} \ket{\psi_2} \cdot \bra{\psi_1} \bra{\psi_2} e^{iS\Delta t}
\\
= & \left[\cos (\Delta t)\ket{\psi_1} \ket{\psi_2} - i \sin(\Delta t) \ket{\psi_2} \ket{\psi_1}\right]
\\
\cdot & \left[ \cos (\Delta t)\bra{\psi_1} \bra{\psi_2} + i \sin(\Delta t) \bra{\psi_2} \bra{\psi_1} \right]
\\
=& \cos^2 (\Delta t)\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} + \sin^2(\Delta t)\ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1}
\\
&- i \sin(\Delta t)\cos (\Delta t)\left[ \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} - \ket{\psi_1} \ket{\psi_2} \bra{\psi_2} \bra{\psi_1} \right]
\end{aligned}
\]
Note that \(\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \rho \otimes \sigma, \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \sigma \otimes \rho\), so
\[ \operatorname{Tr}_{1}\ket{\psi_1} \ket{\psi_2}\bra{\psi_1} \bra{\psi_2} = \sigma, \operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1} \bra{\psi_2} \bra{\psi_1} = \rho.
\]
Now we consider \(\operatorname{Tr}_{2} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\). We have
\[\begin{aligned}
\operatorname{Tr}_{1} \ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2} &= \sum_{j} \left( \bra{j}\otimes I \right)\ket{\psi_2} \ket{\psi_1}\bra{\psi_1} \bra{\psi_2}\left( \ket{j}\otimes I \right)
\\
&=\sum_{j} \ket{\psi_1}\bra{\psi_2} \otimes (\bra{j} \ket{\psi_2} \bra{\psi_1} \ket{j} )
\\
&= \braket{\psi_1 \mid \psi_2} \ket{\psi_1}\bra{\psi_2}
\\
&= \rho\sigma
\end{aligned}
\]
Similarly, $ \operatorname{Tr}_{1} \ket{\psi_1} \ket{\psi_2}\bra{\psi_2} \bra{\psi_1} = \rho \sigma$. So we have
\[\begin{aligned}
\operatorname{Tr}_{1} \left(e^{-iS\Delta t} \rho \otimes \sigma e^{iS\Delta t} \right) &= \cos^2 (\Delta t)\sigma + \sin^2(\Delta t)\rho - i \sin(\Delta t)\cos (\Delta t)\left[ \rho, \sigma \right]
\\
&=\sigma-i \Delta t[\rho, \sigma]+O\left(\Delta t^2\right)
\end{aligned}
\]

浙公网安备 33010602011771号