Co-prime(容斥定理)
2019-08-15 21:10 木木王韦 阅读(332) 评论(0) 收藏 举报Co-prime
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 10 15) and (1 <=N <= 10 9).
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
Sample Input
2
1 10 2
3 15 5
Sample Output
Case #1: 5
Case #2: 10
Hint
In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.
当有n个需要选择时,一共被选择的次数减去被选择两次的个数,加上被选择三次的,减去被选择四次的,依次类推,就是被选择的并集;
ac代码:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
long long t,sum1,sum2,cnt,cnt1,a,b,n,m[105],c=0;
int main(){
cin>>t;
while(t--){
memset(m,0,sizeof(m));
cin>>a>>b>>n;
cnt=0;
//cout<<"%%%"<<cnt<<" "<<n<<endl;
for(int i=2;i*i<=n;i++){//质因子分解
if(n%i==0){//找到n的因子
cnt++;
m[cnt]=i;
// cout<<" "<<i<<" ";
}
//cout<<" N: "<<n<<endl;
while(n%i==0){
n/=i;
}
}
//cout<<"ccccnt:"<<cnt<<"n"<<n<<endl;
if(n!=1){
cnt++;
m[cnt]=n;
// cout<<"NNN:"<<n<<" "<<endl;
}
//cout<<"ccnntt:"<<cnt<<endl;
sum1=0;
int l=1<<cnt;
//cout<<"CNT:"<<cnt<<" 1<<cnt : "<<l<<endl;
for(int i=1;i<(1<<cnt);i++){//1<<cnt即2的cnt次方,即2进制的位数
sum2=1;
cnt1=0;
for(int j=0;j<cnt;j++){
int k=1&(i>>j);
//cout<<"i:"<<i<<" j:"<<j<<" i>>j:"<<k<<endl;
if(1&(i>>j)){//i>>j的意思是将i的二进制向左移j位,按位与1,奇数为1,偶数为0
sum2*=m[j+1];
cnt1++;
//cout<<"i j :"<<i<<" "<<j<<endl;
}
}
//cout<<"sum2:"<<sum2<<endl;
if(cnt1&1){
sum1+=b/sum2;
sum1-=(a-1)/sum2;
}
else{
sum1-=b/sum2;
sum1+=(a-1)/sum2;
}
}
cout<<"Case #"<<++c<<": "<<b-a+1-sum1<<endl;
}
return 0;
}
/*
2
1 20 12
3 15 5
*/
浙公网安备 33010602011771号