Oulipo(KMP)
2019-08-16 11:38 木木王韦 阅读(158) 评论(0) 收藏 举报Oulipo
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e’. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination, l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive 'T’s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A’, ‘B’, ‘C’, …, ‘Z’} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {‘A’, ‘B’, ‘C’, …, ‘Z’}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {‘A’, ‘B’, ‘C’, …, ‘Z’}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3
BAPC
BAPC
AZA
AZAZAZA
VERDI
AVERDXIVYERDIAN
Sample Output
1
3
0
这道题将两个字符串合成一个,中间加一个符号,子字符串是该符号的前缀,往后求其后缀,当后缀长度达到前缀的长度,即符号后面的字符串包含该子字符串。
KMP:个人理解就是找到将字符串中遍历,求出每个字符串与首字符串的公共序列的长度
ac代码:(KMP)
#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
using namespace std;
string s,t;
int n,m;
vector<int> cal_nxt(string s){
int n=(int)s.size();
vector<int> nxt(n);
for(int i=1;i<n;i++){
int j=nxt[i-1];
while(s[i]!=s[j]&&j>0) j=nxt[j-1];//向前缩短序列,以致s[i]==s[j]
if(s[i]==s[j]) j++;
nxt[i]=j;
}
return nxt;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0),cout.tie(0);
int tt;
cin>>tt;
while(tt--){
cin>>t>>s;
m=t.size();
n=s.size();
string T=t+'#'+s;//将两个字符串相加成为一个,求#得最长前后缀
vector<int> nxt=cal_nxt(T);//
int flag=0;
for(int i=m+1;i<(int)T.size();i++){
if(nxt[i]==m){
flag++;
}
}
cout<<flag<<endl;
}
return 0;
}
ac代码:(哈希)
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef unsigned long long ull;
const ull base =2333;//进制
const ull mod = 1e9+7;//取余防止爆精度
const int N=1e6+100;
ull hashes[N],p[N];
ull gethashes(int l,int r){
return (hashes[r]%mod-(hashes[l-1]%mod*p[r-l+1]%mod)%mod+mod)%mod;
}
char s[N],t[N];
int main(){
int T;
cin>>T;
while(T--){
scanf("%s %s",t+1,s+1);//初始位置为1
int n=strlen(s+1);
int m=strlen(t+1);
p[0]=1;
for(int i=1;i<=n;i++){
hashes[i]=(hashes[i-1]*base%mod+s[i]%mod)%mod;
p[i]=(p[i-1]%mod*base%mod)%mod;
}
ull ans=0;
for(int i=1;i<=m;i++) ans=(ans*base%mod+t[i]%mod)%mod;
int res=0;
for(int i=m;i<=n;i++){
if(gethashes(i-m+1,i)==ans){
res++;
}
}
printf("%d\n",res);
}
return 0;
}
浙公网安备 33010602011771号