KNN学习笔记
不说太多,上代码
from numpy import *
import operator
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0.0],[0,0.1]])#这个是训练集
labels = ['A','A','B','B']
return group,labels
def classify0(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances =sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndices = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(),key =operator.itemgetter(1),reverse= True)
return sortedClassCount[0][0]
def file2matrix(filename):
fr = open(filename)
arrayOLines = fr.readlines()
numberOfLines = len(arrayOLines)
returnMat = zeros((numberOfLines,3))
classLabelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index +=1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges , minVals
def datingClassTest():
hoRatio = 0.10
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges,minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back weith :%d, the real answer is :%d"%(classifierResult,datingLabels[i])
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print "the total error rate is :%f"% (errorCount/float(numTestVecs))

浙公网安备 33010602011771号