jvm分析与调优

如何确定某个对象是“垃圾”?

这一小节先了解一个最基本的问题:如果确定某个对象是“垃圾”?既然垃圾收集器的任务是回收垃圾对象所占的空间供新的对象使用,那么垃圾收集器如何确定某个对象是“垃圾”?通过什么方法判断一个对象可以被回收了。

在java中是通过引用来和对象进行关联的,也就是说如果要操作对象,必须通过引用来进行。那么很显然一个简单的办法就是通过引用计数来判断一个对象是否可以被回收。不失一般性,如果一个对象没有任何引用与之关联,则说明该对象基本不太可能在其他地方被使用到,那么这个对象就成为可被回收的对象了。这种方式成为引用计数法

这种方式的特点是实现简单,而且效率较高,但是它无法解决循环引用的问题,因此在Java中并没有采用这种方式(Python采用的是引用计数法)。

 

为了解决这个问题,在Java中采取了可达性分析法。该方法的基本思想是通过一系列的“GC Roots”对象作为起点进行搜索,如果在“GC Roots”和一个对象之间没有可达路径,则称该对象是不可达的,不过要注意的是被判定为不可达的对象不一定就会成为可回收对象。被判定为不可达的对象要成为可回收对象必须至少经历两次标记过程,如果在这两次标记过程中仍然没有逃脱成为可回收对象的可能性,则基本上就真的成为可回收对象了。

 

典型的垃圾收集算法

在确定了哪些垃圾可以被回收后,垃圾收集器要做的事情就是开始进行垃圾回收,但是这里面涉及到一个问题是:如何高效地进行垃圾回收。由于Java虚拟机规范并没有对如何实现垃圾收集器做出明确的规定,因此各个厂商的虚拟机可以采用不同的方式来实现垃圾收集器,所以在此只讨论几种常见的垃圾收集算法的核心思想。

1.Mark-Sweep(标记-清除)算法

这是最基础的垃圾回收算法,之所以说它是最基础的是因为它最容易实现,思想也是最简单的。标记-清除算法分为两个阶段:标记阶段和清除阶段。标记阶段的任务是标记出所有需要被回收的对象,清除阶段就是回收被标记的对象所占用的空间。具体过程如下图所示:

 

 

 

 

 

从图中可以很容易看出标记-清除算法实现起来比较容易,但是有一个比较严重的问题就是容易产生内存碎片,碎片太多可能会导致后续过程中需要为大对象分配空间时无法找到足够的空间而提前触发新的一次垃圾收集动作。

 

不足:

    a) 效率问题,标记和清除两个过程的效率都不高;

    b) 空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后再程序运行过程中需要分配较大对象时,无法找到足够的连续内存二不得不提前触发另一次垃圾收集动作。

 

2.Copying(复制)算法

  为了解决Mark-Sweep算法的缺陷,Copying算法就被提了出来。它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用的内存空间一次清理掉,这样一来就不容易出现内存碎片的问题。具体过程如下图所示:

 

 

 

 

这种算法虽然实现简单,运行高效且不容易产生内存碎片,但是却对内存空间的使用做出了高昂的代价,因为能够使用的内存缩减到原来的一半。很显然,Copying算法的效率跟存活对象的数目多少有很大的关系,如果存活对象很多,那么Copying算法的效率将会大大降低。

 

不足:

    这种算法的代价是将内存缩小为原来的一般,代价太高

  用法:存活区采用这种算法:

    因为新生代中的对象98%是“朝生夕死”,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活的对象一次性的复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%,只有10%的内存会被“浪费”。不能保证每次回收都只有不多于10%的对象存活,当Survivor空间不够时,需要依赖老年代进行分配担保(Handle Promotion)

 

3.Mark-Compact(标记-整理)算法(压缩法)

为了解决Copying算法的缺陷,充分利用内存空间,提出了Mark-Compact算法。该算法标记阶段和Mark-Sweep一样,但是在完成标记之后,它不是直接清理可回收对象,而是将存活对象都向一端移动,然后清理掉端边界以外的内存。具体过程如下图所示:

 

 

 

 

4.Generational Collection(分代收集)算法

分代收集算法是目前大部分JVM的垃圾收集器采用的算法。它的核心思想是根据对象存活的生命周期将内存划分为若干个不同的区域。一般情况下将堆区划分为老年代(Tenured Generation)和新生代(Young Generation),老年代的特点是每次垃圾收集时只有少量对象需要被回收,而新生代的特点是每次垃圾回收时都有大量的对象需要被回收,那么就可以根据不同代的特点采取最适合的收集算法。

目前大部分垃圾收集器对于新生代都采取复制算法,因为新生代中每次垃圾回收都要回收大部分对象,也就是说需要复制的操作次数较少,但是实际中并不是按照1:1的比例来划分新生代的空间的,一般来说是将新生代划分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden空间和其中的一块Survivor空间,当进行回收时,将Eden和Survivor中还存活的对象复制到另一块Survivor空间中,然后清理掉Eden和刚才使用过的Survivor空间。

而由于老年代的特点是每次回收都只回收少量对象,一般使用的是标记-整理算法(压缩法)。

 

老年代使用标记压缩、新生代使用复制算法

  垃圾回收时的停顿现象

  垃圾回收的任务是识别和回收垃圾对象进行内存清理,为了让垃圾回收器可以更高效的执行,大部分情况下,会要求系统进如一个停顿的状态。停顿的目的是为了终止所有的应用线程,只有这样的系统才不会有新垃圾的产生。同时停顿保证了系统状态在某一个瞬间的一致性,也有利于更好的标记垃圾对象。因此在垃圾回收时,都会产生应用程序的停顿。

 

典型的垃圾收集器

垃圾收集算法是 内存回收的理论基础,而垃圾收集器就是内存回收的具体实现。下面介绍一下HotSpot(JDK 7)虚拟机提供的几种垃圾收集器,用户可以根据自己的需求组合出各个年代使用的收集器。

1.Serial/Serial Old收集器 是最基本最古老的收集器,它是一个单线程收集器,并且在它进行垃圾收集时,必须暂停所有用户线程。Serial收集器是针对新生代的收集器,采用的是Copying算法,Serial Old收集器是针对老年代的收集器,采用的是Mark-Compact算法。它的优点是实现简单高效,但是缺点是会给用户带来停顿。

2.ParNew收集器 是Serial收集器的多线程版本,使用多个线程进行垃圾收集。

3.Parallel Scavenge收集器 是一个新生代的多线程收集器(并行收集器),它在回收期间不需要暂停其他用户线程,其采用的是Copying算法,该收集器与前两个收集器有所不同,它主要是为了达到一个可控的吞吐量。

4.Parallel Old收集器 是Parallel Scavenge收集器的老年代版本(并行收集器),使用多线程和Mark-Compact算法。

5.CMS(Current Mark Sweep)收集器 是一种以获取最短回收停顿时间为目标的收集器,它是一种并发收集器,采用的是Mark-Sweep算法。

6.G1收集器 是当今收集器技术发展最前沿的成果,它是一款面向服务端应用的收集器,它能充分利用多CPU、多核环境。因此它是一款并行与并发收集器,并且它能建立可预测的停顿时间模型。

各种版本的垃圾收集器

 

 

 

JDK 9 之前,Server 默认使用 Parallel Scavenge + Serial Old(PS MarkSweep)

JDK9后 使用G1垃圾收集器

那么这里再详细科普一下,下面是每个参数对应的回收器的类型

 

 

 

 

jvm中 根据存放的对象不同称为对象堆和数据栈

  

JVM的调优实际上是对GC回收的调优,减少次数(减少对象堆的回收)

JVM模型图和GC机制:

  • 1. 新new的对象都放在Eden区(伊甸园嘛,创造的地方
  • 2. Eden区满或者快满的时候进行一次清理(Minor Gc),不被引用的对象直接被干掉;还有引用的对象,但是年龄比较大的,挪到S0区
  • 3. 下次Eden区快满的时候,会进行上一步的操作,并且将Eden和S0区的年纪大的对象放到S1区【原理上随时保持S0和S1有一个是空的,用来存下一次的对象】
  • 4. 下下次,Eden区快满的时候,会进行上一步操作,并且将Eden和S1区的年纪大的对象放到S0区【此时S1区就是空的】
  • 5. 直到Eden区快满,S0或者S1也快满的时候,这时候就把这两个区的年纪大的对象放到Old区
  • 6.依次循环,直到Old区也快满的时候,Eden区也快满的时候,会对整个这一块内存区域进行一次大清洗(FullGC),腾出内存,为之后的对象创建,程序运行腾地方。
清理Eden区和Survivor区叫Minor GC;清理Old区叫Major GC;清理整个堆空间—包括年轻代和老年代叫Full GC。

 

二.JVM参数配置

  1. 在jdk1.8以前,生产环境一般有如下配置
-XX:PermSize=512M -XX:MaxPermSize=1024M

表示在JVM里存储Java类信息,常量池和静态变量的永久代区域初始大小为512M,最大为1024M。在项目启动后,这个值是固定的,如果项目class过多,很可能遇到OutOfMemoryError: PermGen异常。

  1. 升级JDK1.8之后,上面的perm配置已经变成
-XX:MetaspaceSize=512M XX:MaxMetaspaceSize=1024M
干货:MetaspaceSize为出发FullGC的阈值,默认约为21M,如做了配置,最小阈值为自定义配置大小。空间使用达到阈值,触发FullGC,同时对该值扩大。当然如果元空间实际使用小于阈值,在GC的时候也会对该值缩小。
MaxMetaspaceSize为元空间的最大值,如果设置太小,可能会导致频繁FullGC,甚至OOM。
 
**永久代最终被移除,方法区移至Metaspace,字符串常量移至Java Heap
 

配置比例:

-Xmn和-Xmx之比大概是1:9,如果把新生代内存设置得太大会导致young gc时间较长

一个好的Web系统应该是每次http请求申请内存都能在young gc回收掉,full gc永不发生,当然这是最理想的情况

xmn的值应该是保证够用(够http并发请求之用)的前提下设置得尽量小

web服务器和游戏服务器的配置思路不太一样,最重要的区别是对游戏服务器的xmn即年轻代设置比较大,和Xmx大概1:3的关系,因为游戏服务器一般是长连接,在保持一定的并发量后需要较大的年轻代堆内存,如果设置得大小了会经常引发young gc

 
 

样例

堆大小设置

java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:设置JVM最大可用内存为3550M。
-Xms3550m:设置JVM促使内存为3550m。此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
-Xmn2g:设置年轻代大小为2G。整个JVM内存大小=年轻代大小 + 年老代大小 + 持久代大小。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8-Xss128k:设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

java
-Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0 -XX:NewRatio=4:设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5 -XX:SurvivorRatio=4:设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6 -XX:MaxPermSize=16m:设置持久代大小为16m。 -XX:MaxTenuringThreshold=0:设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间,增加在年轻代即被回收的概论。

 

回收器选择

JVM给了三种选择:串行收集器、并行收集器、并发收集器,但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统配置进行判断。
1.吞吐量优先的并行收集器
如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:选择垃圾收集器为并行收集器。此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC -XX:+UseParallelOldGC:配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:MaxGCPauseMillis=100:设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy -XX:+UseAdaptiveSizePolicy:设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

 

2.响应时间优先的并发收集器
如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
-XX:+UseParNewGC:设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。
java
-Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction:由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。 -XX:+UseCMSCompactAtFullCollection:打开对年老代的压缩。可能会影响性能,但是可以消除碎片

 

汇总:

常见配置汇总
堆设置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:设置年轻代大小
-XX:NewRatio=n:设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
-XX:SurvivorRatio=n:年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=32,一个Survivor区占整个年轻代的1/5
-XX:MaxPermSize=n:设置持久代大小
收集器设置
-XX:+UseSerialGC:设置串行收集器
-XX:+UseParallelGC:设置并行收集器
-XX:+UseParalledlOldGC:设置并行年老代收集器
-XX:+UseConcMarkSweepGC:设置并发收集器
垃圾回收统计信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器设置
-XX:ParallelGCThreads=n:设置并行收集器收集时使用的CPU数。并行收集线程数。
-XX:MaxGCPauseMillis=n:设置并行收集最大暂停时间
-XX:GCTimeRatio=n:设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
并发收集器设置
-XX:+CMSIncrementalMode:设置为增量模式。适用于单CPU情况。
-XX:ParallelGCThreads=n:设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

 

总结:

    1. 年轻代大小选择
      • 响应时间优先的应用:尽可能设大,直到接近系统的最低响应时间限制(根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
      • 吞吐量优先的应用:尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
    2. 年老代大小选择
      • 响应时间优先的应用:年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率和会话持续时间等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
        • 并发垃圾收集信息
        • 持久代并发收集次数
        • 传统GC信息
        • 花在年轻代和年老代回收上的时间比例
        减少年轻代和年老代花费的时间,一般会提高应用的效率
      • 吞吐量优先的应用:一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
    3. 较小堆引起的碎片问题
      因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,他会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:
      • -XX:+UseCMSCompactAtFullCollection:使用并发收集器时,开启对年老代的压缩。
      • -XX:CMSFullGCsBeforeCompaction=0:上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

 原文链接:https://blog.csdn.net/yrwan95/java/article/details/82829186

 

不足:

    a) 效率问题,标记和清除两个过程的效率都不高;

    b) 空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后再程序运行过程中需要分配较大对象时,无法找到足够的连续内存二不得不提前触发另一次垃圾收集动作。

 

堆和栈:

JVM对于凡是new()创建的对象都一概存放在堆中

1.所有的基本数据类型全部是存储在栈里面,速度快。所以叫数据栈

2.一个对象,他的实体是存储在堆里面的,但是他的引用是存储在栈里面。所以叫对象堆
例子:
String s=new String("123");
这个s就在栈里面,而他的"123"这个对象在堆里面。 s 指向"123";

 

其他JVM相关问题

1.如果用户自己编写了一个称为java.lang.Object的类,并放在程序的ClassPath中,那系统中将会出现多个不同的Object类,Java类型体系中最基础的行为也就无法保证,应用程序也将会变得一片混乱,JVM是怎么避免的?

答:使用双亲委派模型来组织类加载器之间的关系,Java类随着它的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存放在rt.jar之中,无论哪一个类加载器要加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都是同一个类。尝试去编写一个与rt.jar类库中已有类重名的Java类,将会发现可以正常编译,但永远无法被加载运行

 

2.为什么说JAVA是面向对象的?

Java具备面向对象的3个基本特征:继承、封装和多态
 
3.如果对象的引用被置为null,垃圾收集器是否会立即释放对象占用的内存?

不会,在下一个垃圾回收周期中,这个对象将是可被回收的。

也就是说当一个对象的引用变为 null 时,并不会被垃圾收集器立刻回收,而是在下一次垃圾回收时才会释放其占用的内存。

 

4.分别写出堆内存溢出与栈内存溢出的程序(对象堆,数据栈)
栈内存溢出

public void f() {
  f();
}

 

堆内存溢出

public void testd() {
  List<String> list = new ArrayList<>();
  int i = 0;

  while (true) {
    list.add(new String(i + ""));
  i++;
  }
}

 

5.反射中,Class.forName() 和ClassLoader.loadClass()区别

 

  • 加载:加载 class 的二进制流,将字节流存储结构转化为方法区运行的数据结构,生成一个 Class 对象作为这个类的访问入口
  • 验证:保证 class 文件的字节流中包含的信息符合虚拟机的要求,比如文件格式验证,元数据验证等
  • 准备:为类变量分配内存,并设置初始值,并非在堆中分配内存,而是在方法区
  • 解析:将常量池中的符号引用替换为直接引用
  • 初始化:也是类加载的最后一步,执行类构造器 clinit() 方法,按照要求初始化静态变量的值,并执行静态代码块

 

下面是 Class.forName() 和ClassLoader的区别

 

  • Class.forName() 默认执行类加载过程中的连接与初始化动作,一旦执行初始化动作,静态变量就会被初始化为程序员设置的值,如果有静态代码块,静态代码块也会被执行
  • ClassLoader.loadClass() 默认只执行类加载过程中的加载动作,后面的动作都不会执行

 

 

6.说说强引用、软引用、弱引用、虚引用以及他们之间和 gc 的关系
  • 强引用是指在代码中普遍存在的,类似 Object obj = new Object(); 这类的引用,只要强引用还存在,垃圾回收器永远不会回收掉引用的对象
  • 软引用是用来描述一些还有用但并非是必要的对象。对于软引用着的对象,在系统将要发生内存溢出异常之前,将会把这类对象列进回收范围进行第二次的回收。如果这次回收仍然没有足够的内存,就会抛出内存溢出异常。在 jdk1.2 中提供了 SoftReference 类来实现软引用
  • 弱引用也是用来描述非必须对象的,但是它的强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次的垃圾回收之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。在 jdk1.2 中提供了 WeakReference 类来实现弱引用
  • 虚引用也被称为幽灵引用或幻影引用,它是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间造成影响,也无法通过虚引用来取得一个对象的实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集时收到一个系统通知。在 jdk1.2 中提供了 PhantomReference 类来实现虚引用。
7.对象如何晋升到老年代

对象优先在新生代的 eden 区分配内存,但是也并不绝对,下面几种情况对象会晋升到老年代

  • 大对象直接进入老年代。比如很长的字符串,或者很大的数组等
  • 长期存活的对象进入老年代。在堆中分配内存的对象,其内存布局的对象头中(Header)包含了 GC 分代年龄标记信息。如果对象在 eden 区出生,那么它的 GC 分代年龄会初始值为 1,每熬过一次 Minor GC 而不被回收,这个值就会增加 1 岁。当它的年龄到达一定的数值时(jdk1.7 默认是 15 岁),就会晋升到老年代中。
  • 动态对象年龄判定。当 Survivor 空间中相同年龄所有对象的大小总和大于 Survivor 空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,而不需要达到默认的分代年龄。
8.EdenSurvivor的比例分配等

这个比例在每个 jdk 版本中可能是不一样的,在 jdk1.7 中 EdenSurvivor (from 或 to)的比例是 8 : 1。在 jdk1.8 是 6 : 1,如下

 

9.什么是类加载器的双亲委派模型

 

工作过程:如果一个类加载器收到了类加载的请求,它首先不会自己去加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求都应该传送到顶层的启动类加载器,只有当父加载器无法完成这个加载请求时,子加载器才会尝试自己去加载。

为什么要有双亲委派模型呢?原因是双亲委派模型可以保证 Java 程序的稳定性。比如你有一个类,在不采用双亲委派模型的情况下,可能会有不同的加载器去加载这个类,不同类加载器加载出来的 Class 文件必然不相同,这样就造成了不一致性。

 

10.volatile 的语义,它修饰的变量一定线程安全吗

上面我们已经简答的提到了 volatile 关键字的作用,一个是保证内存的可见性,还有防止指令重排序。下面再来解释一下内存可见性

  • 内存可见性:当一条线程修改了某个值,这个新值对于其他的线程是立即可见的,普通的变量不具备这个特征

下面说结论,被 volatile 关键字修饰的变量不是线程安全的,因为 volatile 不能保证原子性。再另外的说一句,被 synchronized 修饰的代码块具备原子性。

 

 

 

 

 

posted @ 2020-03-18 15:43  林被熊烟岛  阅读(153)  评论(0编辑  收藏  举报