k8s 调度 GPU
k8s 调度 GPU
最近公司有项目想在 k8s 集群中运行 GPU 任务,于是研究了一下。下面是部署的步骤。
1. 首先得有一个可以运行的 k8s 集群. 集群部署参考 kubeadm安装k8s
2. 准备 GPU 节点
2.1 安装驱动
|
1
2
3
4
5
|
curl -fsSL https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/7fa2af80.pub | sudo apt-key add -echo "deb https://mirrors.aliyun.com/nvidia-cuda/ubuntu1804/x86_64/ ./" > /etc/apt/sources.list.d/cuda.listapt-get updateapt-get install -y cuda-drivers-455 # 按需要安装对应的版本 |
2.2 安装 nvidia-docker2
<!-- Note that you need to install the nvidia-docker2 package and not the nvidia-container-toolkit. This is because the new --gpus options hasn't reached kubernetes yet -->
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.listsudo apt-get update && sudo apt-get install -y nvidia-docker2## /etc/docker/daemon.json 文件中加入以下内容, 使默认的运行时是 nvidia{ "default-runtime": "nvidia", "runtimes": { "nvidia": { "path": "/usr/bin/nvidia-container-runtime", "runtimeArgs": [] } }}## 重启 dockersudo systemctl restart docker |
2.3 在 k8s 集群中安装 nvidia-device-plugin 使集群支持 GPU
|
1
2
3
4
|
kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.7.3/nvidia-device-plugin.yml# 如果因为网络问题访问不到该文件, 可在浏览器打开 https://github.com/NVIDIA/k8s-device-plugin/blob/v0.7.3/nvidia-device-plugin.yml## 把文件内容拷贝到本地执行 |
nvidia-device-plugin 做三件事情
-
Expose the number of GPUs on each nodes of your cluster
-
Keep track of the health of your GPUs
-
Run GPU enabled containers in your Kubernetes cluster.
之后把节点加入 k8s 集群
以上步骤成功完成之后, 运行以下命令能看到类似下面图片中的内容说明插件安装好了
|
1
2
|
kubectl get pod --all-namespaces | grep nvidiakubectl describe node 10.31.0.17 |


3. 运行 GPU Jobs
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
# cat nvidia-gpu-demo.yamlapiVersion: v1kind: Podmetadata: name: gpu-podspec: containers: - name: cuda-container image: nvidia/cuda:9.0-devel resources: limits: nvidia.com/gpu: 2 # requesting 2 GPUs - name: digits-container image: nvidia/digits:6.0 resources: limits: nvidia.com/gpu: 2 # requesting 2 GPUs |
|
1
2
3
4
5
|
kubectl apply -f nvidia-gpu-demo.yamlkubectl exec -it xxx-76dd5bd849-hlmdr -- bash# nvidia-smi |

以上就简单实现了 k8s 调度 GPU 任务。
如有遇到问题可在留言区讨论。

浙公网安备 33010602011771号