AtCoder Beginner Contest 105 C Base -2 Number 题解

AtCoder Beginner Contest 105 C Base -2 Number

Problem Statement

Given an integer N, find the base −2 representation of N.

Here, S is the base −2 representation of N when the following are all satisfied:

  • S is a string consisting of 0 and 1.
  • Unless S= 0, the initial character of S is 1.
  • Let S=SkS**k−1…S0, then S0×(−2)0+S1×(−2)1+…+S**k×(−2)k=N.

It can be proved that, for any integer M, the base −2 representation of M is uniquely determined.

Constraints

  • Every value in input is integer.
  • −109≤N≤109

Input

Input is given from Standard Input in the following format:

N

Output

Print the base −2 representation of N.

Sample Input 1

-9

Sample Output 1

1011

As (−2)0+(−2)1+(−2)3=1+(−2)+(−8)=−9, 1011 is the base −2 representation of −9.

Sample Input 2

123456789

Sample Output 2

11000101011001101110100010101

Sample Input 3

0

Sample Output 3

0

题解

题意

对于任意给出的数,给出其在-2进制中的表述方法。具体解释可以查看样例1的输入。

思路

其实本题就是考察对进制的理解。特别是对于负数进制,总结下负数进制的相关性质和操作:
负进位制有一个非常奇特的功能:它可以表示出负数但不需要用负号。一个负进制数可能是负数,也可能是正数。比如,负六进制下的12等于十进制下的-4,而负六进制下的123等于1(-6)2+2*(-6)1+3,即十进制下的27。是正是负取决于位数的奇偶:若该数有偶数位,则该数为负数;若有奇数位,则该数为正数。原因很简单,小数点每右移一位,相当于这个数乘以-6;从一位数开始,乘奇数次后该数的位数变成偶数且值为负,乘偶数次该数仍有奇数位且值仍为正。
由于末尾添0的性质(小数点移位的性质)仍然成立,负六进制与十进制的转换依然是上面的方法:(123)-6=(1
(-6)+2)*(-6)+3=(27)10。十进制转负六进制:彻头彻尾的逆操作。找到最小的非负整数x使得当前数减x能被6整除,这个x将作为新的最高位写到结果中,然后当前数减去x再除以-6。

代码

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int INF = 0x3f3f3f3f;
 
#define REP(i,n) for(int i=0;i<(n);i++)
 
const int MAXN = 63;
 
int num[MAXN];
 
int main(){
	int N =0;
	scanf("%d",&N);
	int tot = 0;
	memset(num,0,sizeof(num));
	if(N!=0){
	while(N!=0){
		if(N%2!=0){
			num[tot++] = 1;
			N = (N-1)/(-2);
		}else{
			num[tot++] = 0;
			N = N/(-2);
		}
		//printf("%d %d\n",N,tot);
	}
	for(int i=tot-1;i>=0;i--){
		printf("%d",num[i]);
	}
	printf("\n");
	}else{
		printf("0\n");
	}	
	return 0;
}
posted @ 2018-08-13 15:36  caomp  阅读(276)  评论(0)    收藏  举报