6.5.0 头文件

import torch
from torch import nn
from d2l import torch as d2l

 

6.5.1 自定义的图像池化操作

# X:待池化图像   pool_size池化尺寸   mode池化模式
# 对图像在每个通道上分别进行最大池化或平均池化,最后分别返回每个通道的池化结果
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

# 定义待池化图像X(3行,3列)
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
# 最大池化操作:
Y = pool2d(X, (2, 2))
print(Y)
# 输出:
# tensor([[4., 5.],
#         [7., 8.]])

# 定义待池化图像X(3行,3列)
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
# 平均池化操作
Y = pool2d(X, (2, 2), 'avg')
print(Y)
# 输出:
# tensor([[2., 3.],
#         [5., 6.]])

 

6.5.2 用框架实现的池化操作

# 定义待池化图像X(1个批量,1个通道,4行,4列)
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
print(X)
# 输出:
# tensor([[[[ 0.,  1.,  2.,  3.],
#           [ 4.,  5.,  6.,  7.],
#           [ 8.,  9., 10., 11.],
#           [12., 13., 14., 15.]]]])

# 定义最大池化模型,池化尺寸为3×3
pool2d = nn.MaxPool2d(3)
# 进行最大池化操作
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[10.]]]])

# 定义最大池化模型,池化尺寸为3×3,四周各填充1层0,步幅为2
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])

# 定义最大池化模型,池化尺寸为2×3,上下不填充,左右填充1列,向下步幅为2,向右步幅为3
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])

# 定义多通道的输入图像X
X = torch.cat((X, X + 1), 1)
print(X)
# 输出:
# tensor([[[[ 0.,  1.,  2.,  3.],
#           [ 4.,  5.,  6.,  7.],
#           [ 8.,  9., 10., 11.],
#           [12., 13., 14., 15.]],
#
#          [[ 1.,  2.,  3.,  4.],
#           [ 5.,  6.,  7.,  8.],
#           [ 9., 10., 11., 12.],
#           [13., 14., 15., 16.]]]])
print(X.shape)
# 输出:
# torch.Size([1, 2, 4, 4])

# 定义最大池化模型,池化尺寸为3×3,四周各填充1层0,步幅为2
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]],
#
#          [[ 6.,  8.],
#           [14., 16.]]]])
# torch.Size([1, 2, 2, 2])

print(Y.shape)
# 输出:
# torch.Size([1, 2, 2, 2])

 

本小节完整代码如下

import torch
from torch import nn
from d2l import torch as d2l

# ------------------------------自定义的图像池化操作------------------------------------

# X:待池化图像   pool_size池化尺寸   mode池化模式
# 对图像在每个通道上分别进行最大池化或平均池化,最后分别返回每个通道的池化结果
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

# 定义待池化图像X(3行,3列)
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
# 最大池化操作:
Y = pool2d(X, (2, 2))
print(Y)
# 输出:
# tensor([[4., 5.],
#         [7., 8.]])

# 定义待池化图像X(3行,3列)
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
# 平均池化操作
Y = pool2d(X, (2, 2), 'avg')
print(Y)
# 输出:
# tensor([[2., 3.],
#         [5., 6.]])

# ------------------------------用框架实现的池化操作------------------------------------

# 定义待池化图像X(1个批量,1个通道,4行,4列)
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
print(X)
# 输出:
# tensor([[[[ 0.,  1.,  2.,  3.],
#           [ 4.,  5.,  6.,  7.],
#           [ 8.,  9., 10., 11.],
#           [12., 13., 14., 15.]]]])

# 定义最大池化模型,池化尺寸为3×3
pool2d = nn.MaxPool2d(3)
# 进行最大池化操作
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[10.]]]])

# 定义最大池化模型,池化尺寸为3×3,四周各填充1层0,步幅为2
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])

# 定义最大池化模型,池化尺寸为2×3,上下不填充,左右填充1列,向下步幅为2,向右步幅为3
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])

# 定义多通道的输入图像X
X = torch.cat((X, X + 1), 1)
print(X)
# 输出:
# tensor([[[[ 0.,  1.,  2.,  3.],
#           [ 4.,  5.,  6.,  7.],
#           [ 8.,  9., 10., 11.],
#           [12., 13., 14., 15.]],
#
#          [[ 1.,  2.,  3.,  4.],
#           [ 5.,  6.,  7.,  8.],
#           [ 9., 10., 11., 12.],
#           [13., 14., 15., 16.]]]])
print(X.shape)
# 输出:
# torch.Size([1, 2, 4, 4])

# 定义最大池化模型,池化尺寸为3×3,四周各填充1层0,步幅为2
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]],
#
#          [[ 6.,  8.],
#           [14., 16.]]]])
# torch.Size([1, 2, 2, 2])

print(Y.shape)
# 输出:
# torch.Size([1, 2, 2, 2])

 

posted on 2022-11-09 17:01  yc-limitless  阅读(59)  评论(0)    收藏  举报