6.2.0 头文件

import torch
from torch import nn
from d2l import torch as d2l

 

6.2.1 图像与卷积核的卷积操作

# X:待卷积的图像
# K:卷积核
# 将图像X与卷积核K进行卷积操作,返回卷积的结果(无填充)
def corr2d(X, K):
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
Y = corr2d(X, K)
print(Y)
# 输出:
# tensor([[19., 25.],
#         [37., 43.]])

 

6.2.2 定义卷积层

# 卷积层
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        # 调用父类构造函数
        super().__init__()
        # 随机初始化权重
        self.weight = nn.Parameter(torch.rand(kernel_size))
        # 初始化偏移量为1
        self.bias = nn.Parameter(torch.zeros(1))
    # 定义前向传播函数
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

 

6.2.3 学习卷积核

# 定义一个二维卷积层,它具有1个输入通道,1个输出通道和形状为(1,2)的卷积核,没有偏移量
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
X = X.reshape((1, 1, 6, 8)) # 卷积层的输入采用四维的格式(批量大小、通道、高度、宽度),这里批量大小和通道数都为1
Y = Y.reshape((1, 1, 6, 7)) # 卷积层的输出采用四维的格式(批量大小、通道、高度、宽度),这里批量大小和通道数都为1
lr = 3e-2  # 学习率
# 10轮训练过程
for i in range(10):
    # 卷积核的预测输出
    Y_hat = conv2d(X)
    # 模型损失
    l = (Y_hat - Y) ** 2
    # 更新权重
    conv2d.zero_grad()
    l.sum().backward()
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    # 每隔两轮输出一次模型损失
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')
# 输出:
# epoch 2, loss 7.530
# epoch 4, loss 1.927
# epoch 6, loss 0.595
# epoch 8, loss 0.211
# epoch 10, loss 0.081

 

本小节完整代码如下

import torch
from torch import nn
from d2l import torch as d2l

# ------------------------------图像与卷积核的卷积操作------------------------------------

# X:待卷积的图像
# K:卷积核
# 将图像X与卷积核K进行卷积操作,返回卷积的结果(无填充)
def corr2d(X, K):
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
Y = corr2d(X, K)
print(Y)
# 输出:
# tensor([[19., 25.],
#         [37., 43.]])

# ------------------------------定义卷积层------------------------------------

# 卷积层
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        # 调用父类构造函数
        super().__init__()
        # 随机初始化权重
        self.weight = nn.Parameter(torch.rand(kernel_size))
        # 初始化偏移量为1
        self.bias = nn.Parameter(torch.zeros(1))
    # 定义前向传播函数
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

# ------------------------------学习卷积核------------------------------------

# 定义一个二维卷积层,它具有1个输入通道,1个输出通道和形状为(1,2)的卷积核,没有偏移量
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)
X = X.reshape((1, 1, 6, 8)) # 卷积层的输入采用四维的格式(批量大小、通道、高度、宽度),这里批量大小和通道数都为1
Y = Y.reshape((1, 1, 6, 7)) # 卷积层的输出采用四维的格式(批量大小、通道、高度、宽度),这里批量大小和通道数都为1
lr = 3e-2  # 学习率
# 10轮训练过程
for i in range(10):
    # 卷积核的预测输出
    Y_hat = conv2d(X)
    # 模型损失
    l = (Y_hat - Y) ** 2
    # 更新权重
    conv2d.zero_grad()
    l.sum().backward()
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    # 每隔两轮输出一次模型损失
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')
# 输出:
# epoch 2, loss 7.530
# epoch 4, loss 1.927
# epoch 6, loss 0.595
# epoch 8, loss 0.211
# epoch 10, loss 0.081

 

posted on 2022-11-08 23:45  yc-limitless  阅读(69)  评论(0)    收藏  举报