import torch
from torch import nn
from d2l import torch as d2l

# 定义一个池化层的正向传播函数,实现对输入图像的最大池化操作或平均池化操作
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
Y = pool2d(X, (2, 2))   #2×2最大池化操作
print(Y)
# 输出:
# tensor([[4., 5.],
#         [7., 8.]])
Y = pool2d(X, (2, 2), 'avg')    #2×2平均池化操作
print(Y)
# 输出:
# tensor([[2., 3.],
#         [5., 6.]])

# -----------------------------------------------------------------------------

# 创建一个(4×4)的X
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
# 定义一个最大池化层,窗口尺寸为3×3,步幅也为(33)
pool2d = nn.MaxPool2d(3)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[10.]]]])

# 定义一个最大池化层,窗口尺寸为3×3,步幅为(2,2),上下左右各填充1行或1列
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]]]])


# --------------------------------------------------------------------

# 在多个输入通道上进行池化操作
# 构造输入通道X,将原通道X、将原通道每个元素加1得到的新通道K+1进行拼接得到多输入通道X
X = torch.cat((X, X + 1), 1)
# 定义一个最大池化层,窗口尺寸为3×3,步幅为(2,2),上下左右各填充1行或1列
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
Y = pool2d(X)
print(Y)
# 输出:
# tensor([[[[ 5.,  7.],
#           [13., 15.]],

#          [[ 6.,  8.],
#           [14., 16.]]]])

 

posted on 2022-10-24 10:52  yc-limitless  阅读(35)  评论(0)    收藏  举报