import torch
from IPython import display
from d2l import torch as d2l
#获取和读取Fashion-MNIST数据集,返回训练集和验证集的数据迭代器
def load_data_fashion_mnist(batch_size, resize=None):
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root="./data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(root="./data", train=False, transform=trans, download=True)
return (data.DataLoader(mnist_train, batch_size, shuffle=True,num_workers=get_dataloader_workers()),data.DataLoader(mnist_test, batch_size, shuffle=False,num_workers=get_dataloader_workers()))
#设置批量大小为256
batch_size = 256
#获得Fashion-MNIST数据集的训练集和验证集的数据迭代器
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 输入特征X的个数(784 = 28 × 28)
num_inputs = 784
# 输出标签y的个数(10种类别)
num_outputs = 10
# 正态分布初始化权重矩阵W
W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
# 0初始化偏置向量b
b = torch.zeros(num_outputs, requires_grad=True)
# 定义softmax操作,将预测值规范化
def softmax(X):
X_exp = torch.exp(X)
partition = X_exp.sum(1, keepdim=True)
return X_exp / partition
# 定义softmax回归模型
def net(X):
# 计算y' = softmax(o)
# 其中o是未规范化预测o = wx+b
# y'为规范化预测
return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)
# # 给定两个样本的真实标签
# y = torch.tensor([0, 2])
# # 给定两个样本在三种类别上的预测概率
# y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
# # 取出每个样本真实标签所对应的预测概率
# y_hat[[0, 1], y]
# 交叉熵损失函数,输出为每个样本的损失
def cross_entropy(y_hat, y):
return - torch.log(y_hat[range(len(y_hat)), y])
# 计算预测正确的样本个数
def accuracy(y_hat, y):
if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
y_hat = y_hat.argmax(axis=1)
cmp = y_hat.type(y.dtype) == y
return float(cmp.type(y.dtype).sum())
# 一次迭代结束后,在这个测试集上进行一次测试,计算此时的准确度
def evaluate_accuracy(net, data_iter):
if isinstance(net, torch.nn.Module):
net.eval() # 将模型设置为评估模式(并没有走这里)
metric = Accumulator(2) # 预测正确的样本数、样本总数
with torch.no_grad():
for X, y in data_iter:
metric.add(accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
class Accumulator:
# 构造函数的初始长度为n,初始值为0
def __init__(self, n):
self.data = [0.0] * n
# 将训练损失、训练精度、训练样本数进行累加
def add(self, *args):
self.data = [a + float(b) for a, b in zip(self.data, args)]
def reset(self):
self.data = [0.0] * len(self.data)
# 取出训练损失、训练精度或训练样本数
def __getitem__(self, idx):
return self.data[idx]
# 一次完整的迭代训练过程
def train_epoch_ch3(net, train_iter, loss, updater):
# 将模型设置为训练模式(并没有走这里)
if isinstance(net, torch.nn.Module):
net.train()
# 训练损失总和、预测正确的个数总和、训练样本数总和
metric = Accumulator(3)
for X, y in train_iter:# 从训练集中取出一个批量的样本以及其对应的标签
# 计算网络模型的规范化预测结果,y_hat中存放的是一个批量(256)的预测结果,每个预测结果包括10个类别的概率
y_hat = net(X)
# 计算每个样本的损失,所以l中存放了一个批量(256)的样本损失
l = loss(y_hat, y)
if isinstance(updater, torch.optim.Optimizer):
# 使用PyTorch内置的优化器和损失函数(并没有走这里)
updater.zero_grad()
l.mean().backward()
updater.step()
else:
# 小梯度批量下降优化函数
l.sum().backward()
updater(X.shape[0])
# 将训练损失、预测正确的个数、训练样本数进行累加
metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
# 返回平均训练损失、平均训练精度
return metric[0] / metric[2], metric[1] / metric[2]
class Animator:
"""在动画中绘制数据"""
def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
ylim=None, xscale='linear', yscale='linear',
fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
figsize=(3.5, 2.5)):
# 增量地绘制多条线
if legend is None:
legend = []
d2l.use_svg_display()
self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
if nrows * ncols == 1:
self.axes = [self.axes, ]
# 使用lambda函数捕获参数
self.config_axes = lambda: d2l.set_axes(
self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
self.X, self.Y, self.fmts = None, None, fmts
def add(self, x, y):
# 向图表中添加多个数据点
if not hasattr(y, "__len__"):
y = [y]
n = len(y)
if not hasattr(x, "__len__"):
x = [x] * n
if not self.X:
self.X = [[] for _ in range(n)]
if not self.Y:
self.Y = [[] for _ in range(n)]
for i, (a, b) in enumerate(zip(x, y)):
if a is not None and b is not None:
self.X[i].append(a)
self.Y[i].append(b)
self.axes[0].cla()
for x, y, fmt in zip(self.X, self.Y, self.fmts):
self.axes[0].plot(x, y, fmt)
self.config_axes()
display.display(self.fig)
display.clear_output(wait=True)
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):
# 定义一个动画对象
animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],legend=['train loss', 'train acc', 'test acc'])
# 每一次迭代的过程中
for epoch in range(num_epochs):
# 迭代训练一次,得到(平均训练损失,平均训练精度)
train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
# 一次迭代结束后,在测试集上进行一次测试,计算此时的准确度
test_acc = evaluate_accuracy(net, test_iter)
# 画图
animator.add(epoch + 1, train_metrics + (test_acc,))
train_loss, train_acc = train_metrics
assert train_loss < 0.5, train_loss
assert train_acc <= 1 and train_acc > 0.7, train_acc
assert test_acc <= 1 and test_acc > 0.7, test_acc
# 学习率
lr = 0.1
# 定义小梯度批量下降优化函数
def updater(batch_size):
return d2l.sgd([W, b], lr, batch_size)
num_epochs = 10 # 迭代次数
# train_iter:Fashion-MNIST数据集的训练集数据迭代器
# test_iter:Fashion-MNIST数据集的测试集数据迭代器
# cross_entropy:交叉熵损失函数
# updater:小梯度批量下降优化函数
# net:softmax函数
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)