矩阵的定义

 

实矩阵和复矩阵 

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵

n 阶矩阵或n 阶方阵

行数与列数都等于 n 的矩阵称为n 阶矩阵或n 阶方阵. n 阶矩阵 A 也记作 A n.

行矩阵和行向量

只有一行的矩阵 A =(a1 a2… an),称为行矩阵,又称行向量

为避免元素间的混淆,行矩阵也记作 A =(a1,a2,…,an).

列矩阵,又称列向量

只有一列的矩阵

 

 同型矩阵

两个矩阵的行数相等、列数也相等时,就称它们是同型矩阵

对角矩阵 

对应 阶方阵

 

这个方阵的特点是:从左上角到右下角的直线(叫做对角线)以外的元素都 是 0.这种方阵称为对角矩阵,简称对角阵.对角阵也记作 A = diag(λ1,λ2,…,λn);

 

 

 

 

 

 

 

 

 

 

posted @ 2021-11-29 08:45  天子骄龙  阅读(1483)  评论(0)    收藏  举报