osi 七层

七层模型OSI

  七层模型,亦称做OSI(Open System Interconnection)。参考模型是国际标准化组织(ISO)指定的一个用于计算机或通信系统间互联的标准体系,一般称为OSI参考模型或者七层模型。

  它是一个七层的、抽象的模型体,不仅包括一系列抽象的术语或概念,也包括具体的协议。

起源

  OSI的大部分设计工作实际上只是Honeywell Information System 公司的一个小组完成的,小组的技术负责人是Charlie Bachman。在70年代中期,这个小组主要是为了开发一些原型系统而成立的,主要关注数据库系统的设计。70年代中,为了支持数据库系统的访问,需要一个结构化的分布式通信系统体系结构。

  于是这个小组研究了现有的一些解决方案,其中包括IBM公司的SNA(System Network Architecture)、ARPANET(Internet的前身)的协议、以及为标准化的数据库正在研究中的一些表示服务(presentation services)的相关概念,在1977年提出了一个七层的体系结构模型,他们内部称之为分布式系统体系结构(DSA)。
  与此同时,1977年英国标准化协会向国际标准化组织(ISO)提议,为了定义分布处理之间的通信基础设施,需要一个标准的体系结构。结果,ISO就开放系统互联(OSI)问题成立了一个专委会(TC 97, Subcomittee 16),指定由美国国家标准协会(ANSI)开发一个标准草案,在专委会第一次正式会议之前提交。

  Bachman [1]  参加了ANSI早期的会议,并提交了他的七层模型,这个模型就成了提交ISO专委会的唯一的一份草案。

  1978年3月,在ISO的OSI专委会在华盛顿召开的会议上,与会专家很快达成了共识,认为这个分层的体系结构能够满足开放式系统的大多数需求,而且具有可扩展的能力,能够满足新的需求。

  于是,1978年发布了这个临时版本,1979年稍作细化之后,成了最终的版本。所以,OSI模型和1977年DSA模型基本相同。

分层

 

  网络中的七层协议为:应用层、表示层、会话层、传输层、网络层、数据链路层、物理层。那么介绍一下在网络七层协议中传输数据时的工作原理是:
在数据的实际传输中,发送方将数据送到自己的应用层,加上该层的控制信息后传给表示层;表示层如法炮制,再将数据加上自己的标识传给会话层;以此类推,每一层都在收到的数据上加上本层的控制信息并传给下一层;最后到达物理层时,数据通过实际的物理媒体传到接收方。接收端则执行与发送端相反的操作,由下往上,将逐层标识去掉,重新还原成最初的数据。由此可见,数据通讯双方在对等层必须采用相同的协议,定义同一种数据标识格式,这样才可能保证数据的正确传输。

  这个模型学了好多次,总是记不住。今天又看了一遍,发现用历史推演的角度去看问题会更有逻辑,更好记。本文不一定严谨,可能有错漏,主要是抛砖引玉,帮助记性不好的人。总体来说,OSI模型是从底层往上层发展出来的。

物理层(以二进制数据形式在物理媒体上传输数据)

  建立、维护、断开物理连接。(由底层网络定义协议)
  TCP/IP 层级模型结构,应用层之间的协议通过逐级调用传输层(Transport layer)、网络层(Network Layer)和物理数据链路层(Physical Data Link)而可以实现应用层的应用程序通信互联。
  应用层需要关心应用程序的逻辑细节,而不是数据在网络中的传输活动。应用层其下三层则处理真正的通信细节。在 Internet 整个发展过程中的所有思想和着重点都以一种称为 RFC(Request For Comments)的文档格式存在。针对每一种特定的 TCP/IP 应用,有相应的 RFC文档。
  一些典型的 TCP/IP 应用有 FTP、Telnet、SMTP、SNTP、REXEC、TFTP、LPD、SNMP、NFS、INETD 等。RFC 使一些基本相同的 TCP/IP 应用程序实现了标准化,从而使得不同厂家开发的应用程序可以互相通信

  科学家要解决的第一个问题是,两个硬件之间怎么通信。具体就是一台发些比特流,然后另一台能收到。于是,科学家发明了物理层:

  主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特。

 

数据链路层(传输有地址的帧以及错误检测功能)

  建立逻辑连接、进行硬件地址寻址、差错校验 等功能。(由底层网络定义协议)将比特组合成字节进而组合成帧,用MAC地址访问介质,错误发现但不能纠正。

  现在通过电线我能发数据流了,但是,我还希望通过无线电波,通过其它介质来传输。然后我还要保证传输过去的比特流是正确的,要有纠错功能。

于是,发明了数据链路层:

  定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。这一层通常还提供错误检测和纠正,以确保数据的可靠传输。


网络层(为数据包选择路由)

  进行逻辑地址寻址,实现不同网络之间的路径选择。
  协议有:ICMP IGMP IP(IPV4 IPV6)

  如果我有多台计算机,怎么找到我要发的那台?或者,A要给F发信息,中间要经过B,C,D,E,但是中间还有好多节点如K.J.Z.Y。我怎么选择最佳路径?这就是路由要做的事。

  于是,发明了网络层。即路由器,交换机那些具有寻址功能的设备所实现的功能。这一层定义的是IP地址,通过IP地址寻址。所以产生了IP协议。

 

传输层(提供端对端的接口协议,TCP、OCP等)

  定义传输数据的协议端口号,以及流控和差错校验。
  协议有:TCP UDP,数据包一旦离开网卡即进入网络传输层
  

  现在我能发正确的发比特流数据到另一台计算机了,但是当我发大量数据时候,可能需要好长时间,例如一个视频格式的,网络会中断好多次(事实上,即使有了物理层和数据链路层,网络还是经常中断,只是中断的时间是毫秒级别的)。那么,我还须要保证传输大量文件时的准确性。于是,我要对发出去的数据进行封装。就像发快递一样,一个个地发。

例如TCP,是用于发大量数据的,我发了1万个包出去,另一台电脑就要告诉我是否接受到了1万个包,如果缺了3个包,就告诉我是第1001,234,8888个包丢了,那我再发一次。这样,就能保证对方把这个视频完整接收了。

例如UDP,是用于发送少量数据的。我发20个包出去,一般不会丢包,所以,我不管你收到多少个。在多人互动游戏,也经常用UDP协议,因为一般都是简单的信息,而且有广播的需求。如果用TCP,效率就很低,因为它会不停地告诉主机我收到了20个包,或者我收到了18个包,再发我两个!如果同时有1万台计算机都这样做,那么用TCP反而会降低效率,还不如用UDP,主机发出去就算了,丢几个包你就卡一下,算了,下次再发包你再更新。

 

会话层(解除与建立与别的接口的联系)

  建立、管理、终止会话。(在五层模型里面已经合并到了应用层)对应主机进程,指本地主机与远程主机正在进行的会话

  现在我们已经保证给正确的计算机,发送正确的封装过后的信息了。但是用户级别的体验好不好?难道我每次都要调用TCP去打包,然后调用IP协议去找路由,自己去发?当然不行,所以我们要建立一个自动收发包,自动寻址的功能。

  于是,发明了会话层。会话层的作用就是建立和管理应用程序之间的通信

 

表示层(数据格式化,代码转换,数据加密)

  数据的表示、安全、压缩。(在五层模型里面已经合并到了应用层)格式有,JPEG、ASCll、EBCDIC、加密格式等。
  现在我能保证应用程序自动收发包和寻址了。但是我要用Linux给window发包,两个系统语法不一致,就像安装包一样,exe是不能在linux下用的,shell在window下也是不能直接运行的。于是需要表示层(presentation),帮我们解决不同系统之间的通信语法问题。
 

应用层(文件传输,电子邮件,文件服务,虚拟终端)

  网络服务与最终用户的一个接口。协议有:HTTP FTP TFTP SMTP SNMP DNS TELNET HTTPS POP3 DHCP。传输的数据根据应用层的协议进行服务。
 

引用OSI七层模型:

  
posted @ 2020-06-08 19:23  凡心凡尘  阅读(74)  评论(0)    收藏  举报