pandas.contact函数

默认情况下是对两个DataFrame对象进行纵向连接, 当然通过设置参数,也可以通过它实现DataFrame对象的横向连接

一、列数相同

import pandas as pd

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number'])
df2 = pd.DataFrame([['c', 3], ['d', 4]], columns=['letter', 'number'])
df3 = pd.concat([df1, df2])
print(df3)

结果如下:

 二、列数不同

2.1 合并后不足的列补全

import pandas as pd

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number'])
df2 = pd.DataFrame([['c', 3,'cat'], ['d', 4,'dog']], columns=['letter', 'number','animal'])
df3 = pd.concat([df1, df2])
print(df3)

结果如下:

 2.2 只合并相同的列

import pandas as pd

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number'])
df2 = pd.DataFrame([['c', 3,'cat'], ['d', 4,'dog']], columns=['letter', 'number','animal'])
df4 = pd.concat([df1, df2],join='inner') #inner类似mysql中用法
print(df4)

 三、横向合并

import pandas as pd

df1 = pd.DataFrame([['a', 1], ['b', 2]], columns=['letter', 'number'])
df2 = pd.DataFrame([['cat','north'], ['dog','south']], columns=['animal','type'])
df3 = pd.concat([df1, df2],axis=1)
print(df3)

结果如下:

 

posted @ 2022-05-09 14:14  linma  阅读(3154)  评论(0)    收藏  举报